Как устроены и где используются гибкие солнечные панели?

Где и как используется солнечная энергия?

Гибкие панели используются в различных сферах. Прежде чем составлять проект энергоснабжения дома с использованием этих солнечных батарей, узнайте, где они используются и каковы характеристики их использования в нашем климате.

Область применения солнечных панелей

Широко используются гибкие солнечные элементы. Они успешно используются в электронике, электрификации зданий, автомобилестроении, авиастроении, космических объектах.

В строительстве такие панели используются для обеспечения электроэнергией жилых и промышленных зданий.

Солнечная энергия может быть единственным источником электричества, или она может дублировать традиционную схему электроснабжения, чтобы в случае недостаточной эффективности в определенный период в доме не закончилась энергия

Портативные зарядные устройства на основе гибких солнечных элементов доступны каждому и продаются повсюду. Большие гибкие дорожные панели для выработки электроэнергии в любой точке мира очень популярны у путешественников.

Очень необычная, но практичная идея – использовать дорожное покрытие как основу для гибких аккумуляторов. Специальные элементы защищены от ударов и не боятся больших нагрузок.

Гибкие батареи хороши тем, что их можно использовать практически в любой ситуации. Их легко разместить на крыше автомобиля или на корпусе яхты

Эта идея уже реализована. «Солнечная» дорога снабжает энергией окрестные села, не занимая при этом ни одного лишнего метра земли.

Особенности использования гибких аморфных панелей

Тем, кто намеревается начать использовать гибкие солнечные панели в качестве источника электроэнергии для своего дома, следует знать об особенностях их эксплуатации.

Галерея изображенийФото из Основа, на которую нанесены кристаллы кремния, определяет срок службы, а вместе с тем и диапазон использования гибких солнечных элементов. Солнечные элементы, созданные на основе полимерной пленки, легкие и удобные в транспортировке. На их основе теперь производят портативные зарядные устройства для мобильной техники, получающую энергию. Энергоэффективная вставка в рюкзак. Портативное зарядное устройство. Эффективная зарядка на дачном участке. Встроенный аккумулятор

Солнечные панели на гибкой металлической основе используются там, где к долговечности мини-электростанций предъявляются повышенные требования:

Галерея изображенийФото из Любителям морских путешествий лучше выбрать гибкие солнечные батареи на основе металлических листов. Также желательно, чтобы устройства были снабжены водоотталкивающей защитой. Ввиду того, что во время прогулки на лодке могут возникать порывы ветра, способные помешать легкому полимерному устройству, лучше всего приобретать солнечную батарею на гибкой металлической основе.Учесть, что помимо повышенной износостойкости у устройств на основе металла есть недостаток – радиус изгиба меньше, чем у полимерных. Солнечные панели с гибкой металлической основой лучше ставить на металлический кузов фургона. Это нанесет минимальный ущерб корпусу Мост морского или речного катера Тент на речном судне Малый радиус кривизны Установка на металлический корпус

В первую очередь пользователей волнует вопрос, что делать зимой, когда световой день короткий и электричества не хватает для работы всех устройств?

Да, в пасмурную погоду и несколько часов дня производительность панелей снизится. Хорошо, когда есть альтернатива в виде возможности перехода на централизованную власть. В противном случае нужно запастись аккумуляторами и заряжать их в дни, когда хорошая погода.

Интересной особенностью солнечных элементов является то, что при нагревании фотоэлемента его эффективность значительно снижается.

В летнюю жару панели перегреваются, но работают хуже. Зимой в солнечный день солнечные элементы способны улавливать больше света и преобразовывать его в энергию

Количество ясных дней в году зависит от региона. Конечно, на юге рациональнее использовать гибкие батарейки, так как солнце светит дольше и чаще.

Поскольку Земля меняет свое положение относительно Солнца в течение дня, панели лучше размещать универсально, то есть с южной стороны под углом примерно 35-40 градусов. Такая ситуация будет актуальна как утром, так и вечером и в полдень.

Как выбрать лучший

Для того, чтобы при выборе гелиосистемы сделать правильный выбор и выбрать именно тот модуль, который отвечает предъявляемым к нему требованиям, необходимо следовать критериям, определяющим его соответствие условиям эксплуатации и техническим характеристикам гелиосистемы в целом.

При выборе конкретной модели следует обратить внимание на:

  1. Бренд производителя.

Только производитель, отвечающий за качество изготовления и соответствие эксплуатационных показателей заявленным характеристикам, дает гарантию на свою продукцию

Чем продолжительнее гарантийный срок, тем большее внимание производитель уделяет качеству своей продукции

  1. Корпус модуля.

Прочный корпус выполненный из качественных материалов, является залогом долгой и успешной эксплуатации.

  1. Класс эксплуатации устройства.

Производители, гарантируя успешную эксплуатацию своих моделей, указывают их класс эксплуатации, в соответствии с которым они, заявляют предел изменения технических характеристик модуля, в процесс его использования.

Изделия с класса «А» должны сохранить свои технические показатели, в течение всего срока эксплуатации, с погрешностью не более 5,0%, класса «В» — с погрешностью до 30,0% и класса «С» — более 30,0%.

  1. Напряжение устройства.

Этот технический параметр важен, т.к. от него зависит работа всей солнечной электростанции. Производители могут указывать три типа напряжения, определяющих работу солнечного модуля, это:

  • Номинальное напряжение – определяет параметры сети, в которой устанавливается солнечная панель.
  • Напряжение холостого хода – измеряется на выходах солнечного модуля без подключения нагрузки и характеризует максимальное значение напряжения, которое может выдавать конкретная модель.
  • Максимальное напряжение – определяет значение, при максимальном КПД работающего устройства.
  1. Мощность солнечной панели.

Этот показатель определяет количество требуемых солнечных модулей, для обеспечения потребности потребителя в электрической энергии. Данный показатель напрямую связан с габаритными размерами устройства – чем выше мощность, тем большего размера солнечная панель.

  1. КПД устройства.

Чем выше данный показатель, тем меньшее количество модулей потребуется установить, чтобы количество вырабатываемой электрической энергии, соответствовало ее потребности.

  1. Температурный режим эксплуатации.

Данный параметр изначально определяет возможность установки конкретной модели в том или ином месте установки и характеризует влияние температуры окружающего воздуха на способность вырабатывать электрический ток – на КПД устройства.

Внимательно изучив выше приведенные показатели, которые могут служить критериями выбора конкретного устройства, можно избежать ошибок и не нужных финансовых трат.

Критерии выбора

Определяющим фактором служат климатические условия: длина солнечных дней, их количество. Жителям регионов с малой освещенностью подойдут панели из микроморфного кремния – они не нуждаются в точном ориентировании, по суммарной годовой мощности опережают прочие тонкопленочные вариации. В северных районах востребовано текстурированное стекло.

Критерием выбора гибких солнечных панелей является длина солнечных дней

Важно, чтобы мощность модуля соответствовала потребностям используемых электроприборов. Необходимо найти не только оптимальный участок для размещения изделий, но и резервную площадку, позволяющую впоследствии нарастить мощность

Качество и длительность эксплуатации, а также стоимость продукции зависят от базового материала, номинальной производительности, типа конструкции и параметров фотоэлемента. На профильном рынке востребованы как иностранные, так и заслужившие доверие отечественные бренды – последние оптимально приспособлены к климатическим условиям региона.

Заслуживают внимания гибридные панели, генерирующие электрическую и тепловую энергию.

Безкремниевые устройства

Некоторые из современных видов солнечных панелей изготовляется из редких металлов с КПД 30%. На фоне своих кремниевых аналогов, такие конструкции намного дороже, но обзавелись большим количеством приверженцев по всему миру за счет выдающихся характеристик.

Основное достоинство заявленных конструкций – возможность эффективной работы даже в самых экстремальных условиях. Именно поэтому, даже несмотря на свою сильную дороговизну, солнечные панели из редких металлов не только обзавелись немалым списком приверженцев, но и продолжают постоянно улучшать свои базовые показатели.

Для изготовления заявленного типа фотоэлементов используют следующие соединения:

  • селенид индия-меди (CIS);
  • селенид индия-меди-галлия (CIGS);
  • теллурид кадмия (CdTe).

Теллур, галлий – весьма редкие металлы, а кадмий и вовсе токсичен. Потому массовое производство солнечных установок из дорогостоящего сырья пока невозможно даже в теоритическом аспекте

Важно понимать, что КПД перечисленных элементов превышает 30% и в некоторых случаях может доходить до 40%

Факт! Ранее указанные металлы использовались для производства космических кораблей, но в данный момент в этом сфере появилось новое, более продуктивное решение.

Даже при температурных показателях выше 130°C фотоэлементы из редких металлов продолжают стабильно работать, потому готовые солнечные установки используются на теплоэлектростанциях. При этом солнечные лучи, отражающиеся от нескольких сотен зеркал, собираются на одной небольшой панели. Её работа заключается не только в генерации электроэнергии, но и в передачи водному теплообменнику тепловой энергии. Результат – вода нагревается, образуется пар, который вращает турбину, и таким образом появляется электроэнергия.

Получается, что солнечная энергия используется для производства электрической сразу несколькими эффективными путями.

Область применения солнечных панелей

Стационарные панели

Солнечные панели могут использоваться как в стационарных условиях, так и быть переносными.

Фиксированные модули применяются в следующих областях:

  • на солнечных электростанциях;
  • в автономных, резервных или гибридных электростанциях для дома или дачи;
  • для обогрева помещений и нагрева воды (солнечный коллектор);
  • в автономных системах освещения улиц;
  • для питания рекламных щитов;
  • в системах навигации и сигнализации;
  • в насосных станциях и др.

Рассматривая стационарные солнечные электростанции, остановимся подробнее на тех, которые используются для электроснабжения дома. Чтобы обеспечить жилище электричеством с помощью энергии Солнца, понадобятся следующие комплектующие:

  • солнечные модули;
  • аккумулятор (для накопления неизрасходованной энергии);
  • контроллер напряжения (увеличивает срок службы аккумулятора, но не обязателен для установки);
  • инвертор (преобразует постоянный ток аккумулятора в необходимый переменный ток для электроприборов).

Домашние солнечные электростанции по отношению к централизованному электроснабжению могут быть:

автономные.

Автономные, т.е. независимые от других источников питания, солнечные электростанции используются там, где невозможно по определенным причинам (значительная удаленность от населенных пунктов) подключение к общей электросети. Их использование целесообразно в южных районах, где длиннее световой день и большое количество ясных дней. В любом случае ее желательно продублировать генератором на горючем топливе. Основные преимущества автономной станции – это ее экологичность, бесшумность, минимальное техническое обслуживание в течение эксплуатации. Минус – ночью или в пасмурные дни электроэнергия вырабатываться не будет. Кроме того для их работы необходимы выше названные комплектующие, которые делают автономную систему довольно дорогой.

резервные.

Резервные, или сетевые, электростанции устанавливаются там, где есть подключение к центральной электрической сети. Она используется, как дополнительный источник электроэнергии. Резервная солнечная электростанция начинает свою работу в случае перерыва подачи электроэнергии от сети. Преимущества – бесшумность, надежность, возможность монтажа на крышу или фасад здания. Также плюсом является отсутствие аккумулятора, контроллера и инвертора, что значительно удешевляет систему.

гибридные.

По сути, представляет собой автономную станцию, подключенную к электрической сети. Энергия, полученная от Солнца, используется в первую очередь, при ее нехватке подача электроэнергии идет уже от централизованного электроснабжения. Позволяет значительно экономить на платежах за потребленную электроэнергию.

Мобильные модули

Мобильные устройства по преобразованию энергии Солнца в электрический ток могут применяться:

  • для зарядки мобильных телефонов и других мобильных устройств;
  • для питания радиоприемников во время походов, рыбалки;
  • для питания систем навигации во время экспедиций;
  • для освещения в темное время суток во время походов.

Портативные батареи стали незаменимым аксессуаром у любителей загородных поездок и туристов, путешествующих по диким местам, в которых отсутствует электричество. Так как современная жизнь даже на необитаемом острове или в горах невозможна без различных гаджетов, их подзарядка производится от зарядных устройств, преобразующих солнечную энергию. Портативные солнечные батареи чаще всего выпускаются на основе монокристаллического кремния. Они различаются размерами, формой, мощностью. Компактные батареи с небольшой мощностью могут поместиться в кармане, а большие и мощные  могут быть установлены на крыше автомобиля. Кроме того они снабжены всевозможными переходниками для подключения различной техники.

Сколько стоит солнечная батарея

Продажа солнечных батарей – дело выгодное и перспективное.  Объем продаж увеличивается ежегодно. На первом месте по продажам – китайские производители, продукция которым  отличается низкой стоимостью. Такая ситуация привела к банкротству крупных немецких брендов, стоят которые вдвое дороже китайских солнечных батарей.

Стоимость солнечных батарей зависит от производителя и мощности,  и имеет огромный разброс – от 1800 грн. до  9000 грн. (для Украины), от 5 тыс. рублей до 30 тысяч (для России). Стоимость этих батарей SunCharger SC- 9/14 и SunCharger SC-34/18 тоже высокая (надо же платить за отличные характеристики). Она составляет соответственно 6100 и 20700 рублей. Но, в сравнении с гибкой батареей фирмы AcmePower 32 Вт, цена за которую равна 27 тысяч рублей, эта батарея гораздо дешевле.

Солнечная батарея SunCharger SC- 9/14

Солнечная батарея SunCharger SC-34/18

Обзор

Сегодня батареи солнечные тонкопленочные помимо классической установки на крышах, можно использовать вместо остекления. Модули такие отличаются разнообразным цветовым решением, что позволяет зданиям придавать неповторимый внешний вид.

Стекло закаленное, покрывающее фотоэлементы, имеет большую механическую прочность, чем обычное, и более безопасно. Поэтому верхние этажи домов во многих странах, а также лоджии и балконы остекляются именно им.

Помимо этого, оно обеспечивает достаточно хорошую прозрачность, гарантирующую высокую эффективность даже при рассеянном свете, т.е. они не только выглядят эстетично, но и экономят бюджет.

За непрозрачную батарею заплатить придется порядка 9 тысяч рублей, за цветную прозрачную частично (20%) -16 тысяч.

Тем не менее, специалисты считают, что будущее гелиоэнергетики именно за ними.

Они ссылаются на такие достоинства тонкопленочных батарей:

  • низкая себестоимость;
  • небольшая разница в КПД;
  • постоянное повышение стоимости кристаллических аналогов.

К тому же технология тонких пленок считается наиболее надежной. Уже сегодня разработано несколько видов батарей тонкопленочных, называемых также «гибкими», для создания которых применяют:

  • кремний аморфный;
  • кадмия теллурид/сульфид;
  • диселениды медно-индиевые и медно-гелиевые.

Принцип работы солнечной батареи

В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.

При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.

Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.

Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).

Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.

Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.

Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.

Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.

И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.

Термальная солнечная электростанция в Испании (город Севилья)

Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность

Затем важно, каким запасом энергии они обладают

Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.

Основные виды и классификация солнечных батарей

Все солнечные батареи, известные в настоящее время, можно классифицировать следующим образом:

  • Устройства малой мощности, предназначенные для питания и зарядки небольших приборов – смартфонов, планшетов и т.д. Их можно применять вне стационарных сетей.
  • Универсальные батареи. Обеспечивают питание электронных устройств при отсутствии стационарной сети.
  • Солнечная батарея (панель). Состоят из набора фотоэлементов, закрепленных на подложке. Получили наиболее широкое распространение и в свою очередь разделяются на отдельные категории.

Классификация и типы солнечных батарей (модулей):

  • Фотоэлектрические преобразователи. Конструктивно являются полупроводниковыми устройствами для преобразования солнечной энергии напрямую в электрическую. Несколько элементов, соединенных между собой, становятся солнечной батареей, которая выглядит как панель. Принцип действия заключается в фотоэлектрическом эффекте, когда в неоднородных полупроводниковых структурах под действием солнечного света появляется электрический ток. Электрофизические характеристики полупроводников могут отличаться, что влияет и на эффективность самого преобразователя.
  • Гелиоэлектростанции. Представляют собой солнечные установки, работающие от концентрированной энергии солнца, приводящей в движение паровые, газотурбинные и другие агрегаты. Принцип работы основан на использовании обычных линз или вогнутых зеркал, собирающих и концентрирующих солнечные лучи. В фокусе размещается нагревательный элемент, температура которого постепенно увеличивается. Зеркала считаются более эффективными, поскольку дают возможность получить более мощное излучение.
  • Солнечные коллекторы. Относятся к низкотемпературным нагревательным установкам, обеспечивающим горячее водоснабжение в автономном режиме. Широко применяются и в других сферах. Мощность каждого устройства полностью зависит от его полезной площади. Они способны нагревать жидкости до температур в диапазоне 100-200С.

Дополнительная классификация

Существует еще целый ряд признаков, позволяющих классифицировать солнечные батареи. Среди них большое значение имеет расположение атомов кремния в кристаллическом элементе.

В связи с этим, можно выделить следующие типы солнечных батарей:

  • Монокристаллические. Для их изготовления применяется кремний высокой чистоты, получаемый промышленным способом. КПД таких батарей составляет 14-17%.
  • Поликристаллические. Этот вид солнечных батарей изготавливается из кремниевого расплава, медленно охлаждаемого до нужного состояния. Данный способ значительно дешевле, а полученный кремний приобретает ярко синий цвет. КПД таких элементов ниже, в пределах 10-12%.
  • Панели на основе аморфного кремния. Они относятся к категории тонкопленочных, поскольку кремний наносится на основу как очень тонкая пленка и покрывается защитным материалом. Данный метод изготовления считается наиболее дешевым и простым, но эффективность таких изделий ниже, чем в любом кристаллическом варианте. Компоненты панелей постепенно теряют свои качества. КПД находится на уровне 5-6%.

Основные виды солнечных панелей следует рассмотреть более подробно. Зная их параметры и технические характеристики, гораздо легче сделать правильный выбор.

Плюсы и минусы солнечных батарей

Солнечная батарея обладает своими преимуществами и недостатками. Рассмотрим их более подробно.

Плюсы:

  • Высокая экологичность. При эксплуатации не используются невосполнимые ископаемые, не возникает отходов.
  • Отсутствие шума.
  • Доступность. Каждый уголок Земного шара освещается Солнцем.
  • Постоянство. Если ископаемые могут закончиться, их выработка уменьшиться, то наcчет солнечной энергии беспокоиться не стоит. По данным ученых, нашему светилу еще долго ничего не грозит.
  • Обширная область использования. Панели могут применяться как в сельской местности, так и в космосе.
  • Новые технологии. На солнечных батареях проводят испытания, на их усовершенствование тратятся громадные суммы, данная область постоянно модернизируется, подвергается инновациям.

Минусы:

  • Дороговизна. Не каждый человек может позволить себе установить достаточное количество солнечных элементов питания для обеспечения своих нужд. Электрификация небольшого дачного домика обойдется в 1000-1200 долларов, в то время как на двухэтажных особняк может уйти до 10 000 у.е.
  • Солнечное освещение – непостоянная единица. КПД батареи будет снижаться в ночное время, пасмурную погоду.

Устройство гелиобатареи

С каждым годом оборудование для преобразования солнечной энергии в электрическую становится всё доступнее и дешевле. Сегодня существуют не только стационарные панели для обеспечения электроэнергией домов и хозяйственных построек, но и портативные. Они используются туристами для зарядки телефонов, фонариков и других устройств. Солнечные панели устанавливают на электрические автомобили. Также они используются на космических спутниках. Из таких батарей даже начали строить полномасштабные электростанции.Это интересно: как изготовить солнечный коллектор для дома своими руками. Строение солнечной батареи подразумевает блок, состоящий из какого-либо количества модулей — полупроводниковых фотоэлементов, соединённых между собой последовательно. Чтобы выяснить принцип работы солнечных панелей, нужно понять действие конечного элемента всего устройства.

Фотоэлемент состоит из двух слоёв кремния, каждый из которых имеет различные физические свойства. Во время попадания солнечных лучей на фотоэлемент между двумя слоями появляется вентильная фото-ЭДС. Из-за этого появляется разность потенциалов и возникает электрический ток. Различаются солнечные батареи по принципу производства на:

  • поликристаллические;
  • монокристаллические.

У монокристаллических моделей КПД больше, но и стоимость их производства выше по сравнению с поликристаллическими устройствами. Оба вида отличаются между собой по внешним признакам. Монокристаллы имеют однородную структуру. Они представляют собой квадраты, имеющие срезанные углы. У поликристаллов правильная квадратная форма.


Солнечные батареи – удовольствие не из дешевых, однако в будущем они помогут сэкономить вам деньги

Поликристаллические фотоэлементы производят методом плавного остывания расплавленного кремния. Это довольно простая технология, поэтому себестоимость такого материала относительно низкая. Но КПД поликристаллов составляет не больше 15%. Кремниевые пластины, произведённые по такой технологии, получаются неоднородной структуры и с примесями.

Выбор

Одним из важных критериев выбора являются климатические условия местности, в которой будут установлены гелиопанели. Учитывается количество солнечных дней в году и длина самого дня. Исходя из этих данных, определяется мощность электроэнергии, которую должна вырабатывать батарея в час или сутки. Для северных районов подойдет текстурированное стекло, оно эффективно справляется с работой даже в пасмурные дни. Модули из микроморфного кремния не требуют точной ориентации на солнце, их суммарная годовая мощность превосходит другие тонкопленочные батареи. На них часто останавливают свой выбор жители районов с малой освещенностью.

Выбирая модуль для дома, необходимо продумать, какие электроприборы будут востребованы, хватит ли для них мощности предполагаемой покупки.

При покупке учитывается тип конструкции, материал, толщина фотоэлемента, производитель модуля – все это влияет на цену, качество и длительность работы. Не обязательно переплачивать за иностранные бренды, хорошо себя зарекомендовали модули российского производства, ориентированные на наши климатические условия.

Для расчета количества модулей, следует учитывать, что семья из 4 человек, в среднем, потребляет 200–300 кВт электроэнергии в месяц. Солнечные панели вырабатывают с одного квадратного метра примерно от 25 Вт до 100 Вт в сутки. Для полного удовлетворения дома в потребностях электричества, понадобится 30–40 секций. Оснащение солнечными батареями обойдется семье около 10 тысяч долларов. Устанавливать панели следует на южную сторону крыши, куда попадает максимальное количество солнечных лучей.

Чтобы определиться с выбором, следует понять, какой тип модуля больше подходит покупателю:

  • Монокристаллические фотоэлементы стоят 1,5 доллара за Вт. Они имеют меньшие размеры и более эффективны, чем другие виды подобных батарей. Их общее покрытие занимает меньше места. Учитывая мощность и качество, лучше сделать выбор в их пользу. Единственным минусом является высокая стоимость.
  • Поликристаллические батареи стоят 1,3 доллар за Вт. По мощности они уступают монокристаллическим, но и оцениваются дешевле. Бюджетные возможности привлекают покупателей, к тому же последние разработки подобных батарей сильно приблизили их КПД к монокристаллическим аналогам.
  • Солнечные тонкопленочные панели имеют меньше мощности на один квадратный метр, чем предыдущие модели. Ситуацию выравнивает появление на рынке модулей из микроморфного кремния. Они вырабатывают хорошую суммарную мощность за годовой отрезок времени, отлично себя зарекомендовали в работе видимого и инфракрасного спектра. Для них не важна привязанность к солнечным лучам. Срок эксплуатации батарей составляет 25 лет. Модули имеют недорогую технологию производства, это сказалось на их стоимости – 1,2 доллара за Вт.
  • Большой интерес представляет собой гибридная панель, так как она генерирует тепловую и электрическую энергию. Конструкция соединяет в себе коллектор тепла и элементы фотоэлектрической батареи.

По описанию солнечных батарей видно, что для территорий с малой освещенностью больше подойдут панели микроморфного кремния, южные районы могут воспользоваться поликристаллическими батареями. Для тех, кто не стеснен материально, отличным выбором станут более мощные монокристаллические фотоэлементы.

Сегодня еще остаются претензии к гибким солнечным панелям, но завтрашний день, несомненно, за ними. Их активное усовершенствование приводит к снижению стоимости, они уверенно вытесняют кристаллические аналоги из промышленной и бытовой сферы деятельности человека.

Области применения

Технологии, основанные на гибких солнечных элементах, широко востребованы на космических объектах, при обустройстве зданий, в обслуживании портативной электроники, в авиа- и автомобилестроении. Панели могут быть задействованы для доставки электричества в промышленные и жилые объекты. Гелиосистема может служить основным источником энергии, также ее внедряют в качестве дублирующей, вспомогательной схемы.

Производители предлагают портативные зарядные устройства – компактные гибкие солнечные батареи, которые удобно носить с собой. Представляет интерес одно из их практичных воплощений – модуль с базой в виде дорожного полотна, защищенного от ударов. В персональных проектах изделия монтируют на корпусах яхт и катеров, крышах автомобилей.

II. Небольшие гибкие солнечные батареи – 20 ватт.

У этого же продавца в перечень самых продаваемых панелей вошла довольно компактная версия 420 на 330 мм, толщиной также всего 3 мм. В комплект входит:

  • переходник на прикуриватель;
  • адаптер с парой USB-коннекторов;
  • один провод с зажимом-«крокодилом».

Предназначение и параметры

Такая панель также подразумевает установку на крыше автомобиля или катера, а может использоваться для подзарядки аккумулятора автомобиля, с подключением через коннектор.

Заявленная пиковая мощность, согласно сертификату – 20 ватт. Проверил.

1.  На солнце она действительно выдала этот показатель – 20 вольт и 1 ампер.

2.  Через USB в помещении, даже через чистое стекло, у меня получилось выжать при зарядке смартфона только 0,3 — 0,5 ампера.

3.  Подключил светодиодную ленту – на это раз длинную, на 55 метров сразу. Обнаружил, что даже если совсем отвернуть панель от окна на 180 градусов, диоды все равно горят! Пусть и не слишком ярко.

4.  После разворота и установки гибкой панели у окна полноценную яркую подсветку удается обеспечить без проблем.

Мой вариант применения

Лично я такие панели использую и планирую использовать в дальнейшем для подзарядки уличных светильников. Точнее, их аккумуляторов через контроллер. Хотя большинство людей покупают данную версию в авто и на природу. Если вас интересует больше информации – в магазине о ней очень много отзывов.

Кстати, мои уличные светильники работают уже 3 года только от энергии солнца и встроенных в них аккумуляторов, рассчитанных на 18 часов непрерывной. Так что плюс от такого альтернативного источника энергии серьезный.

И последнее. Существует вариант подключать такие панели к портативным камерам видеонаблюдения. Это тоже очень интересная идея. Одну из таких камер я уже сделал полностью автономной, за счет использования именно такой солнечной панели. И сейчас тестирую этот гибрид. В будущем постараюсь сделать обзор – не пропустите.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Наш Бастион
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Преимущества и недостатки гибких солнечных панелей

Система размещения панелей

1. Солнечные батареи следует размещать в наиболее освещенном месте. Позаботьтесь о том, чтобы соседние здания или деревья их не затеняли. Наиболее оптимальными местами для установки являются крыши и стены зданий. Возможна установка солнечных панелей на специальных опорах непосредственно на земельном участке.

2

Для достижения максимальной выработки энергии важно соблюдать необходимый угол наклона и азимут. В северном полушарии оптимальный азимут 180 гр (строго на юг). Оптимальный угол наклона солнечной панели для стационарной установки равен географической широте, для Санкт-Петербурга 60 гр

(0 гр. – горизонтально, 90 гр – вертикально). При установке панелей с возможностью изменения угла наклона летом следует увеличить, а зимой уменьшить угол на 12 гр. Таким образом, для Санкт-Петербурга имеем 48 гр. летом и 72 гр. зимой. Зависимость выработки энергии от угла наклона и азимута можно посмотреть в on-line калькуляторе

Оптимальный угол наклона солнечной панели для стационарной установки равен географической широте, для Санкт-Петербурга 60 гр. (0 гр. – горизонтально, 90 гр – вертикально). При установке панелей с возможностью изменения угла наклона летом следует увеличить, а зимой уменьшить угол на 12 гр. Таким образом, для Санкт-Петербурга имеем 48 гр. летом и 72 гр. зимой. Зависимость выработки энергии от угла наклона и азимута можно посмотреть в on-line калькуляторе.

3

В зимний период выпавший на поверхность солнечных батарей снег снизит выработку электроэнергии до нуля, поэтому крайне важно обеспечить доступ к панелям для их очистки, либо установить солнечные модули под углом, близким к 90 гр., например на стене здания

4. При установке большого числа солнечных батарей на плоской поверхности при помощи наклонных консолей в несколько рядов необходимо соблюсти расстояние между рядами во избежание затенения солнечных модулей друг  другом. Расстояние между рядами следует принимать не менее 1.7 высоты ряда.

5. Устройство солнечной батареи позволяет осуществлять крепеж на любые поверхности и не требует покупки специализированных, дорогих крепежных элементов. Алюминиевый профиль каждого модуля имеет отверстия для крепления и не ограничивает варианты поверхностей для установки.

Где и как применяют солнечную энергию

Гибкие панели применяются в разных сферах. Прежде чем составлять проект энергообеспечения дома при помощи этих солнечных батарей, выясните, где они применяются и каковы особенности их использования в нашем климате.

Область применения солнечных батарей

Применение гибких солнечных батарей очень широкое. Они с успехом используются в электронике, электрификации зданий, автомобиле- и авиастроении, на космических объектах.

В строительстве такие панели используют для обеспечения жилых и промышленных зданий электричеством.

Солнечная энергия может быть единственным источником электричества, а может дублировать традиционную схему электроснабжения, чтобы на случай недостаточной эффективности в определенный период дом не остался обесточенным

Портативные зарядные устройства на основе гибких солнечных элементов доступны каждому и продаются повсеместно.

Большие гибкие туристические панели для добычи электроэнергии в любом уголке Земного шара очень популярны среди путешественников.

Гибкие батареи хороши еще тем, что могут быть применены практически в любых ситуациях. Их можно без труда разместить на крыше автомобиля или корпусе яхты

Эта идея уже реализована. «Солнечная» дорога обеспечивает энергией окрестные деревни, при этом не занимая ни одного лишнего метра земли.

Особенности применения гибких аморфных панелей

Те, кто планирует начинать использование гибких солнечных панелей в качестве источника электроэнергии для своего дома, должны знать особенности их эксплуатации.

Прежде всего пользователей волнует вопрос, а что делать зимой, когда световой день короткий и электричества не хватит на функционирование всех приборов?

Да, в условиях пасмурной погоды и короткого светового дня производительность панелей снижается. Хорошо, когда есть альтернатива в виде возможности переключения на централизованное электроснабжение. Если ее нет, нужно запасаться аккумуляторами и заряжать их в те дни, когда погода благоприятная.

Интересная особенность солнечных батарей заключается в том, что при нагревании фотоэлемента его эффективность существенно снижается.

В летний зной панели раскаляются, но работают хуже. Зимой, в солнечный день фотоэлементы способны улавливать большее количество света и преобразовывать его в энергию

Число ясных дней в году зависит от региона. Разумеется, на юге использовать гибкие батареи рациональнее, поскольку солнце там светит дольше и чаще.

Так как в течение дня Земля меняет свое положение относительно Солнца, панели лучше располагать универсально – то есть с южной стороны под углом около 35-40 градусов. Такое положение будет актуальным как в утренние и вечерние часы, так и в полдень.

II. Небольшие гибкие солнечные батареи – 20 ватт.

У этого же продавца в перечень самых продаваемых панелей вошла довольно компактная версия 420 на 330 мм, толщиной также всего 3 мм. В комплект входит:

  • переходник на прикуриватель;
  • адаптер с парой USB-коннекторов;
  • один провод с зажимом-«крокодилом».

Предназначение и параметры

Такая панель также подразумевает установку на крыше автомобиля или катера, а может использоваться для подзарядки аккумулятора автомобиля, с подключением через коннектор.

Заявленная пиковая мощность, согласно сертификату – 20 ватт. Проверил.

1.  На солнце она действительно выдала этот показатель – 20 вольт и 1 ампер.

2.  Через USB в помещении, даже через чистое стекло, у меня получилось выжать при зарядке смартфона только 0,3 — 0,5 ампера.

3.  Подключил светодиодную ленту – на это раз длинную, на 55 метров сразу. Обнаружил, что даже если совсем отвернуть панель от окна на 180 градусов, диоды все равно горят! Пусть и не слишком ярко.

4.  После разворота и установки гибкой панели у окна полноценную яркую подсветку удается обеспечить без проблем.

Мой вариант применения

Лично я такие панели использую и планирую использовать в дальнейшем для подзарядки уличных светильников. Точнее, их аккумуляторов через контроллер. Хотя большинство людей покупают данную версию в авто и на природу. Если вас интересует больше информации – в магазине о ней очень много отзывов.

Кстати, мои уличные светильники работают уже 3 года только от энергии солнца и встроенных в них аккумуляторов, рассчитанных на 18 часов непрерывной. Так что плюс от такого альтернативного источника энергии серьезный.

И последнее. Существует вариант подключать такие панели к портативным камерам видеонаблюдения. Это тоже очень интересная идея. Одну из таких камер я уже сделал полностью автономной, за счет использования именно такой солнечной панели. И сейчас тестирую этот гибрид. В будущем постараюсь сделать обзор – не пропустите.

Тонкопленочные технологии для солнечных панелей

Изобретение технологии с использованием тонкой пленки дало возможность постепенно вытеснить кристаллические солнечные панели, приближаясь к ним по своим техническим характеристикам. Основные преимущества таких изделий заключаются в их невысокой себестоимости, которая становится определяющим фактором в конкурентной борьбе. Модули нового типа отличаются гибкостью, легкостью и эластичностью, что дает возможность устанавливать их практически на любые поверхности.

Основными компонентами пленочных систем являются алюминий, аморфный кремний, теллурид кадмия и другие виды полупроводников, из которых состоит вся конструкция. Все элементы закрепляются на полимерной пленке и составляют единое целое. Количество вырабатываемой электроэнергии напрямую зависит от площади изделия.

В самом начале в тонкопленочных элементах применялся аморфный кремний, наносимый на подложку. Такая конструкция, где используются эти компоненты служила совсем недолго, а КПД составлял всего лишь 4-5%. С улучшением технологии эти показатели возросли, в том числе и КПД, который достиг 8%. Тонкопленочные солнечные батареи третьего поколения увеличили этот показатель до 12% и стали вполне конкурентоспособными по отношению к кремниевым панелям. Таких показателей удалось достичь за счет селенида меди-индия и теллурида кадмия, нашедших свое применение еще в первых портативных зарядных устройствах.

Теллурид кадмия считается более перспективным для дальнейшего использования в солнечных батареях с тонкой пленкой. Некоторое время шли споры о его токсичности, но исследования показали, что вредные выбросы минимальны и не представляют опасности для окружающих. При этом, его КПД достиг 11%, а цена за 1 Вт на 30% ниже, по сравнению с кремниевыми аналогами.

Селенид меди-индия считается еще более эффективным. В настоящее время индий в большинстве случаев заменяется галлием, поскольку он практически весь используется в других производствах. Однако, даже в этом случае пленочные солнечные батареи нового поколения выдают КПД, равный 20%.

Безкремниевые устройства

Некоторые из современных видов солнечных панелей изготовляется из редких металлов с КПД 30%. На фоне своих кремниевых аналогов, такие конструкции намного дороже, но обзавелись большим количеством приверженцев по всему миру за счет выдающихся характеристик.

Основное достоинство заявленных конструкций – возможность эффективной работы даже в самых экстремальных условиях. Именно поэтому, даже несмотря на свою сильную дороговизну, солнечные панели из редких металлов не только обзавелись немалым списком приверженцев, но и продолжают постоянно улучшать свои базовые показатели.

Для изготовления заявленного типа фотоэлементов используют следующие соединения:

  • селенид индия-меди (CIS);
  • селенид индия-меди-галлия (CIGS);
  • теллурид кадмия (CdTe).

Теллур, галлий – весьма редкие металлы, а кадмий и вовсе токсичен. Потому массовое производство солнечных установок из дорогостоящего сырья пока невозможно даже в теоритическом аспекте

Важно понимать, что КПД перечисленных элементов превышает 30% и в некоторых случаях может доходить до 40%

Факт! Ранее указанные металлы использовались для производства космических кораблей, но в данный момент в этом сфере появилось новое, более продуктивное решение.

Даже при температурных показателях выше 130°C фотоэлементы из редких металлов продолжают стабильно работать, потому готовые солнечные установки используются на теплоэлектростанциях. При этом солнечные лучи, отражающиеся от нескольких сотен зеркал, собираются на одной небольшой панели. Её работа заключается не только в генерации электроэнергии, но и в передачи водному теплообменнику тепловой энергии. Результат – вода нагревается, образуется пар, который вращает турбину, и таким образом появляется электроэнергия.

Получается, что солнечная энергия используется для производства электрической сразу несколькими эффективными путями.

Типы

Классификация промышленных панелей солнечных происходит по типу рабочего слоя и конструктивным особенностям. Различают панели жесткие и гибкие.

Последние занимают все более широкую нишу благодаря универсальной установке: он и легко устанавливаются на любые поверхности, в том числе на вертикальны – фасады зданий. При этом они совершенно не портят архитектуру, а напротив привносят в не некую изюминку.

По типу фотоэлектрического слоя их подразделяют на:

  • кремниевые. К ним относятся поли — , монокристаллические и аморфные;
  • теллурий-кадмиевые. Их собирают на основе индия, меди и галлия;
  • полимерные;
  • органические;
  • с использованием арсенида галлия;
  • комбинированные и многослойные.

Не все перечисленные виды интересны потребителю, а лишь кристаллические, несмотря на то, что их КПД ниже некоторых других (правда, более дорогих, отчего и менее распространенных).

Поликристаллические

Описание

Все кремниевые устройства слишком реагируют на перегрев. Температура, рекомендуемая для измерения электрогенерации, составляет 25 градусов. Даже при ее увеличении всего на градус производительность уменьшается на 0,5%.

Чистота кремния намного ниже, чем у рассмотренных выше, также допускается присутствие примесей и инородных включений. Это снижает себестоимость. Для этого вида панелей металл просто разливается в формы. Затем, используя специальные приемы, формируют кристаллы, направленность которых контролировать не нужно.

Остывший кремний режут на слои, обрабатывая их по специальному алгоритму.

Достоинства аморфного кремния в полной мере раскрываются в тени и с наступлением облачных дней и практически незаметны в солнечную погоду.

Не нужны им и поворотные механизмы, поскольку крепятся они стационарно.

Стоит такая разновидность панелей меньше, чем ориентированные. Эффективность их падает на 20% после 20-летнего использования.

Недостатки

Они, понятно, есть:

  • Более низкий КПД;
  • Необходимо большая площадь для монтажа.

В последние годы, благодаря новым исследованиям и появляющимся технологиям, КПД неуклонно растет и у некоторых панелей достигает 20%.

Типы солнечных элементов и их характеристики

Для строительства солнечных батарей выделяют два типа солнечных элементов: поликристаллические (мультикристаллические) и монокристаллические солнечные элементы.

Внешне их легко различить, поликристаллические солнечные элементы в основном синего цвета с морозным узором. Монокристаллические солнечные элементы имеют монотонный темно синий или черный цвет со скругленными углами.

Что касается КПД, то у монокристаллических элементов он составляет до 22%, у поликристаллических до 17%. Разумеется, данный фактор влияет на площадь солнечной батареи (при равной мощности, площадь солнечной батареи из монокристаллов будет на 5% меньше чем поли).

Поликристаллы лучше работают в условиях слабой освещенности (пасмурного дня). А монокристаллы стабильнее работают при температурах свыше 70 градусов.

С каждым годом, солнечные элементы деградируются и теряют определенный % мощности, поэтому можно выделить еще один фактор – срок службы поликристаллов 20 лет, а монокристаллов 40 лет.

Существуют еще солнечные элементы из аморфного кремния, но их КПД до 10% и срок службы до 10 лет., по этой причине, для строительства солнечных батарей, мы их рассматривать не будем.

Ниже представлю основные размеры и параметры солнечных элементов, которые применяются для изготовления солнечных батарей.

Но что делать, если нам необходимо сделать маломощную солнечную панель для зарядки аккумулятора на телефоне, ноутбуке или для изготовления садового фонарика? Для этого, промышленность производит готовые решения солнечных батарей с высоким напряжением 1 – 18В и низким током , которые сверху покрыты прозрачным слоем силикона (для защиты от механических повреждений). Однако для строительства мощных солнечных панелей, такие элементы не подойдут, в виду их дороговизны.

Заключающим звеном солнечных элементов являются элементы из аморфного кремния. Самое большое достоинство этих элементов в том, что они гибкие и имеют большое разнообразие в размерах (от маленьких, для зарядки аккумуляторов, до больших, для обеспечения целого дома электричеством). Однако недостаток элементов из аморфного кремния это низкий КПД и малый срок службы.

С другой стороны технологии не стоят на месте, и, к примеру, Solar Laminate PVL-Series гарантируют, что за 20 лет выходная мощность не упадет ниже 80%. При этом характеристики одного элемента ( Uni-Solar PVL-136 ) составляют:

Размер: 5486мм х 394мм х 4мм

Солнечные элементы из аморфного кремния, достаточно расстелить на крыше, а для увеличения мощности соединить между собой параллельно.

Выбор

Одним из важных критериев выбора являются климатические условия местности, в которой будут установлены гелиопанели. Учитывается количество солнечных дней в году и длина самого дня. Исходя из этих данных, определяется мощность электроэнергии, которую должна вырабатывать батарея в час или сутки. Для северных районов подойдет текстурированное стекло, оно эффективно справляется с работой даже в пасмурные дни. Модули из микроморфного кремния не требуют точной ориентации на солнце, их суммарная годовая мощность превосходит другие тонкопленочные батареи. На них часто останавливают свой выбор жители районов с малой освещенностью.

Выбирая модуль для дома, необходимо продумать, какие электроприборы будут востребованы, хватит ли для них мощности предполагаемой покупки.

При покупке учитывается тип конструкции, материал, толщина фотоэлемента, производитель модуля – все это влияет на цену, качество и длительность работы. Не обязательно переплачивать за иностранные бренды, хорошо себя зарекомендовали модули российского производства, ориентированные на наши климатические условия.

Для расчета количества модулей, следует учитывать, что семья из 4 человек, в среднем, потребляет 200–300 кВт электроэнергии в месяц. Солнечные панели вырабатывают с одного квадратного метра примерно от 25 Вт до 100 Вт в сутки. Для полного удовлетворения дома в потребностях электричества, понадобится 30–40 секций. Оснащение солнечными батареями обойдется семье около 10 тысяч долларов. Устанавливать панели следует на южную сторону крыши, куда попадает максимальное количество солнечных лучей.

Чтобы определиться с выбором, следует понять, какой тип модуля больше подходит покупателю:

  • Монокристаллические фотоэлементы стоят 1,5 доллара за Вт. Они имеют меньшие размеры и более эффективны, чем другие виды подобных батарей. Их общее покрытие занимает меньше места. Учитывая мощность и качество, лучше сделать выбор в их пользу. Единственным минусом является высокая стоимость.
  • Поликристаллические батареи стоят 1,3 доллар за Вт. По мощности они уступают монокристаллическим, но и оцениваются дешевле. Бюджетные возможности привлекают покупателей, к тому же последние разработки подобных батарей сильно приблизили их КПД к монокристаллическим аналогам.

  • Солнечные тонкопленочные панели имеют меньше мощности на один квадратный метр, чем предыдущие модели. Ситуацию выравнивает появление на рынке модулей из микроморфного кремния. Они вырабатывают хорошую суммарную мощность за годовой отрезок времени, отлично себя зарекомендовали в работе видимого и инфракрасного спектра. Для них не важна привязанность к солнечным лучам. Срок эксплуатации батарей составляет 25 лет. Модули имеют недорогую технологию производства, это сказалось на их стоимости – 1,2 доллара за Вт.
  • Большой интерес представляет собой гибридная панель, так как она генерирует тепловую и электрическую энергию. Конструкция соединяет в себе коллектор тепла и элементы фотоэлектрической батареи.

По описанию солнечных батарей видно, что для территорий с малой освещенностью больше подойдут панели микроморфного кремния, южные районы могут воспользоваться поликристаллическими батареями. Для тех, кто не стеснен материально, отличным выбором станут более мощные монокристаллические фотоэлементы.

Сегодня еще остаются претензии к гибким солнечным панелям, но завтрашний день, несомненно, за ними. Их активное усовершенствование приводит к снижению стоимости, они уверенно вытесняют кристаллические аналоги из промышленной и бытовой сферы деятельности человека.

Устройство и работа модулей

Гибкая солнечная панель устроена следующим образом: тонкая подложка покрыта кремниевым полупроводником. Толщина панели с напылением составляет не более 1 мкм. Полупроводник нагревается солнцем, в результате чего электроны перемещаются в заданном направлении. К элементам монтируют выводы и формируют батарею. Для работы такой мобильной электростанции используют солнечную энергию.

Крупногабаритные, с маленьким КПД, солнечные батареи ушли в прошлое. Современным моделям не требуется максимальное количество солнечного света, а сами конструкции стали легкими, гибкими, мобильными, их можно свернуть в трубку и взять с собой в поход.

Для повышения КПД современные технологии позволяют выпускать многослойные полупроводниковые конструкции. Каскадное строение панели дает возможность преобразовывать отраженный свет несколько раз, что доводит их работоспособность почти до кристаллических вариантов.

Несмотря на то что устройство выглядит довольно просто, для подачи тока в сеть необходимы дополнительные составляющие:

  • Аккумулятор, накапливающей энергию. Он нужен при перепадах напряжения.
  • Инвертор, переводящий постоянный ток в переменный.
  • Система для корректировки заряда аккумулятора.

Это интересно: Правильный монтаж светильников в потолок армстронг: разбираем главное

Достоинства и недостатки в сравнении с жесткими модулями

Гибкие панели выигрывают у классических конкурентов практически по всем параметрам. Главными из них являются два наиболее важных достоинства 

1.Среднегодовая производительность.

Практически в любых регионах с количеством солнечных дней в году менее 300, тонкопленочные варианты оказываются эффективнее. Их КПД резко не «проседает» при рассеянном и падающем под большими углами свете. 

Они малочувствительны к температурам вплоть до 60-70°C, в то время как кремниевые модули при таком нагреве теряют около 20% генерации. Это сильно сокращает срок окупаемости СЭС на «пленочной» базе и делает вложения в покупку более выгодными.

2.Функциональность.

Благодаря эластичности и малому весу, гибкие батареи могут широко применяться там, где установка традиционных модулей невозможна. Ими можно покрывать изогнутые крыши теплиц, дугообразных остановок общественного и частного транспорта, дизайнерских зданий с нелинейной формой кровли. 

Тонкие пленки уже сегодня можно вставлять даже в одежду и обувь, чем часто пользуются модные дизайнеры. Кроме того, быстро набирает популярность комплектация гибкими панелями некоторых видов автомобилей и общественного транспорта. В Китае электробусы, питающиеся от тонкопленочных солнечных батарей, в нескольких небольших городах полностью вытеснили классический вид автобусов.

 Частично прозрачные модификации обладают еще более широкими возможностями. В перспективах самого ближайшего будущего – переход на энергосберегающие панорамные окна в офисах крупнейших компаний всех развитых стран мира.

Основных недостатков на сегодняшний день тоже два.

1.КПД при идеальной освещенности и цены.

Обратная ситуация складывается с гибкими батареями на редкоземельных элементах. КПД у CIGS выше, но стоимость настолько высока, что их использование пока целесообразно только в высокотехнологичных отраслях, где цена изделия не критична.

2.Проблема с утилизацией.

Все без исключения гибкие солнечные батареи являются экологически чистыми в процессе эксплуатации. Однако по завершении срока службы их утилизация обходится производителям в немалые суммы. Причина этого – в ядовитости теллура, галлия, кадмия, германия и прочих редкоземельных элементов, что требует применения дорогостоящих технологий при их захоронении.

Решить проблему кардинально поможет только переход на третье поколение панелей, созданных на основе безопасных природных минералов и органики.

Повышение производительности батарей из органических материалов

Пока рулонные органические солнечные батареи проигрывают «классике» в уровне эффективности. Для изменения данной тенденции инженеры находят разные способы, из которых более прочих распространены два.

Способ №1 – Тандемные ячейки

Одной из проблем «солнечной» органики являются слабые молекулярные связи. Решение ученые нашли в создании тандемных ячеек, каждый слой которых состоит из органических материалов разного типа и поглощает различные длины волн. 

Лидером разработок этого направления является китайский физик Чен Йонг Шен и его группа. По утверждению профессора, производительность фотоэлектрических элементов этого класса уже через 3-4 года может вырасти на 30-40%.

Способ №2 – солнечные батареи на органических красителях из бактерий с измененной ДНК

Первыми применять бактерии с модифицированным геномом начали канадцы. С 2018 года они экспериментируют с микроорганизмами вида E.coli, известными своей способностью производить ликопин.

Биохимики из университета Торонто смогли внедрить бактерии в минеральный порошок с полупроводниковыми свойствами. При помещении на подложку такие «биогенные» элементы начали давать ток за счет своей жизнедеятельности. 

Рекорд КПД нынешней фото органики составляет 25% – причем при сверхслабой освещенности всего 220 люкс (аналог довольно темной комнаты). Разработчики новинки – CEA (Франция) и Toyobo Co., Ltd (Япония).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Наш Бастион
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector