Солнечные батареи для дома: схема оборудования, расчет стоимости комплекта

Набор оборудования для солнечной станции

Мощная солнечная батарея для дачи – устройство не самодостаточное. Полученную энергию нужно где-то запасти, чтобы вечером и в пасмурную погоду полноценно пользоваться бытовыми электроприборами.

Поэтому емкий и живучий аккумулятор нам в любом случае потребуется. В его выборе есть один важный нюанс: не пытайтесь сэкономить, покупая стартовый автомобильный аккумулятор. Он плохо подходит для цикличного запасания энергии и не переносит глубокого разряда. Его главное предназначение – дать мощный, но кратковременный ток для пуска двигателя.

Для запасания и медленного расходования энергии нужны аккумуляторы другого типа: AGM или гелевые. Первые дешевле, но имеют небольшой срок службы (до 5 лет). Гелевые аккумуляторы дороже, но зато работают значительно дольше (8-10 лет).

Контроллер – еще один важный элемент автономной гелиостанции. Он выполняет несколько задач:

  • Отключает батарею от аккумулятора в момент полного заряда и включает ее для новой закачки электричества.
  • Выбирает оптимальный режим зарядки, повышая количество запасаемой энергии.
  • Обеспечивает максимальный срок службы аккумулятора.

Существует несколько типов контроллеров, используемых в солнечных станциях:

  • ON/OFF «включил-выключил»;
  • PWM;
  • MPPT.

Самый дешевый прибор просто отключает солнечную панель от аккумулятора при возрастании напряжения на его клеммах до максимального уровня. Это не лучший вариант, поскольку в этот момент аккумулятор еще не полностью заряжен.

Более дорогой PWM-контроллер действует «умнее». После набора максимального напряжения, он понижает его до заданного уровня и держит еще пару часов. Так достигается более полный уровень накопления энергии.

И наконец, самый интеллектуальный контроллер MPPT- типа максимально эффективно использует мощность солнечной панели на всех режимах ее работы. Это позволяет запасти в аккумуляторе дополнительно от 10 до 30 % электричества.

Независимо от вида используемых полупроводниковых материалов (поликристаллы, монокристалл, аморфный кремний) устройство солнечной батареи представляет собой цепочку последовательно соединенных ячеек-модулей. Каждый из них генерирует небольшое напряжение (в пределах 0,5 вольт) и слабый ток (десятые доли ампера). Работая вместе, они «сливают» накопленную энергию в общий канал и на выходе из батареи мы получаем ток большой силы и постоянного напряжения (12 или 24 Вольт).

Структурная схема оборудования солнечной станции

Стандартные бытовые электроприборы рассчитаны на 220 Вольт, поэтому работать от «постоянки» не будут. Преобразование постоянного тока в переменный выполняет отдельное устройство-инвертор. Им завершается цепочка оборудования, необходимого для солнечной батареи.

Несмотря на относительно высокую стартовую стоимость компонентов солнечной станции, ее эксплуатация получается выгодной благодаря большому ресурсу «жизни» главных элементов: фотокристаллической панели и аккумулятора.

Недостатки солнечных батарей

У солнечных батарей существует ряд недостатков, узнав о которых многие хозяева жилья сразу отказываются от затеи их приобретения и установки.

Действительно мощная, эффективная солнечная батарея потребует немалой полностью открытой для солнечных лучей площади.

  • Для получения достаточного количества энергии необходимо установить весьма большое количество батарей довольно больших размеров. Понятно, что для их размещения потребуются большие площади. Многие собственники частных домов используют для их монтажа солнечную сторону крыши. Суммарные показатели емкости блока аккумуляторов должны соответствовать мощности солнечных батарей, поэтому количество и тип АКБ необходимо подобрать правильно.
  • Нельзя забывать, что батарея будет работать эффективно, только если ее лицевая сторона будет подвергаться периодической очистке от насевшей пыли, грязи, разводов высохшей дождевой воды. А это значит, что к поверхности необходимо обеспечить удобный и легкий доступ.
  • Солнечные батареи недостаточно эффективно функционируют в сумерках и совершенно не работают в ночные часы. Чтобы использовать энергию от них в любое время суток необходимо подключение к нескольким аккумуляторам, которые за солнечный период накапливают энергию.
  • Для большого количества аккумуляторов, если система планируется в качестве основного источника энергии, может потребоваться отдельное помещение. «Накопителем» выработанной электрической энергии может быть целая батарея соединенных определенным образом аккумуляторов. Это потребует немало места. Да и стоимость аккумуляторов тоже может быть весьма значительной.
  • Солнечная энергия считается экологически чистой, однако сами пластины фотоэлементов содержат в себе такие токсичные вещества, как кадмий, свинец, мышьяк, галлий и т.п. При нагревании конструкции данные вещества могут выделяться не только в окружающую среду, но и проникать в помещения дома, если батареи установлены на крыше или балконе дома. Оптимальным вариантом будет установить систему в отдалении от жилых строений.
  • При установке батарей на открытой площадке, для более высокой эффективности их работы, систему часто снабжают специальным фотоэлементом, реагирующим на положение Солнца, и поворотным механизмом, который будет поворачивать их вслед за движением светила. Эффективность повышается, но зато возрастает сложность системы и стоимость реализации проекта.
  • Пока что не приходится говорить о высокой эффективности работы подобных систем. Их КПД составляет в самом лучшем случае 20%, остальные 80% воспринятой поверхностью солнечной энергии уходят на нагрев самой батареи, средняя температура которой может достигать 55÷60 градусов. Как уже говорилось выше, при нагреве фотоэлементов, эффективность их работы падает.
  • Чтобы предотвратить перегревание батарей, применяют те или иные системы принудительного охлаждения. Например, устанавливаются вентиляторы или насосы, перекачивающие хладагент. Понятно, что такие приборы также требуют электроэнергии, а также периодического обслуживания. Кроме того, они могут значительно снизить надежность работы всей конструкции. Ну а проблема эффективного пассивного охлаждения батарей пока не решается.

Солнечные батареи на крыше

Прежде всего, нужно выяснить, выдержит ли кровля дополнительную нагрузку. Один-два модуля выдержит любая, а для большего количества придется считать.

Для надежной фиксации они должны крепиться как минимум в четырех точках. Причем, если вы монтируете панели заводского изготовления, не поленитесь изучить инструкцию по установке: при нарушении хотя бы одного из пунктов, оборудование снимается с гарантии. В большинстве случаев требования такие:

  • Крепятся солнечные батареи на расстоянии 5-15 см выше кровельного материала. Этот зазор необходим для проветривания (для поддержания температурного режима).

  • Для закрепления использовать только имеющиеся в корпусе отверстия. Дополнительные сверлить нельзя.
  • Рама, на которой закреплены фотоэлементы, рассчитана на вертикальную или горизонтальную установку (указано в паспорте), и в другом положении ее крепить нельзя.

Системы крепления солнечных панелей могут быть разными. Есть готовые (продаются там же, где и сами панели), но вполне можно использовать и сделанные собственноручно

Важно только использовать надежные, стойкие к коррозии материалы. Толщина реек и крепежа должна быть большой: выдерживать должны они и ветровые нагрузки, и массу панелей с самым толстым снежным покровом

Один из методов крепления солнечных батарей на крыше частного дома можно увидеть в видео.

Теперь немного об электрической сборке. Схема подключения солнечной батареи, кроме самих преобразователей, предусматривает наличие:

  • контроллера заряда с подключенными аккумуляторными батареями;
  • преобразователя (инвертора), который преобразует постоянный ток в переменный;
  • предохранителей для защиты от короткого замыкания (повысят безопасность и вашу и системы).

Контроллер и преобразователь имеют ограничения по току и напряжению. Суммарные параметры подключаемой для вашего дома солнечной системы не должны их превышать. Для электрического соединения батарей в единую систему, использовать нужно только те провода, которые выведены наружу.

Принципиальная схема подключения гелиобатарей

Для соединения панелей применяют медный проводник в стойкой к ультрафиолету изоляции. Если провода в подходящей изоляции не нашли, спрячьте его в гофрированный шланг для наружных работ. Толщина жил провода зависит от предполагаемой силы тока в системе и от длины линии, но минимальное сечение 4 мм2. Соединение проводников желательно делать при помощи коннекторов, а не на скрутках. Рекомендуют МС4 потому что проводники, выходящие из большинства солнечных батарей, оконечены именно такими разъемами

Эти разъемы хороши тем, что обеспечивают герметичное соединение, что на крышах немаловажно. Но не все фирмы устанавливают разъемы этого стандарта

В дешевых моделях (особенно китайских) может стоять что-либо иное, так что уточняйте при покупке.

Это схематическое изображение подключения

Теперь о последовательности подключения оборудования в систему. Для безопасного подключения соблюдайте очередность такую:

  1. К контроллеру подключаются аккумуляторы с соблюдением полярности. Провода — медь, сечение выбирается в зависимости от мощности контроллера.
  2. К контроллеру подключаются солнечные батареи. Также необходимо соблюдать полярность.
  3. К контроллеру через предохранитель подключается 12 В потребители.
  4. К аккумуляторам подключается инвертор (через предохранитель), а к его выходу уже потребители 220 В. Подключение инвертора напрямую к контроллеру исключено: придется покупать новые устройства. А это приблизительно 600-1000$ в зависимости от фирмы и мощности.

Не пренебрегайте последовательностью подключения — это наиболее безопасный алгоритм, гарантирующий (при соблюдении полярности) рабочее состояние системы.

Напоследок, еще один вариант установки на крыше дачи с регулируемым углом наклона. Возможно, вам видео будет полезным.

Устройство и принцип действия солнечной батареи

Когда-то пытливые умы открыли для нас природные вещества, вырабатывающие под воздействием частиц света солнца, фотонов, электрическую энергию. Процесс назвали фотоэлектрическим эффектом. Ученые научились управлять микрофизическим явлением.

На основе полупроводниковых материалов они создали компактные электронные приборы – фотоэлементы.

Производители освоили технологию объединения миниатюрных преобразователей в эффективные гелиопанели. КПД панельных солнечных модулей из кремния широко производимых промышленностью 18-22%.


Из описания схемы наглядно видно: все комплектующие элементы электростанции одинаково важны – от их грамотного подбора зависит согласованная работа системы

Из модулей собирается солнечная батарея. Она является конечным пунктом путешествия фотонов от Солнца до Земли. Отсюда эти составляющие светового излучения продолжают свой путь уже внутри электрической цепи как частицы постоянного тока.

Они распределяются по аккумуляторам, либо подвергаются трансформации в заряды переменного электротока напряжением 220 вольт, питающего всевозможные домашние технические устройства.

Солнечная батарея представляет собой комплекс последовательно соединенных полупроводниковых устройств – фотоэлементов, преобразующих солнечную энергию в электрическую

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

Нам понадобится:

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки

Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Преимущества солнечных батарей

Солнечная энергия — это перспективное направление, которое постоянно развивается. Они имеют несколько основных достоинств. Удобство использования, долгий срок службы, безопасность и доступность.

Положительные стороны применение данной разновидности аккумуляторных батарей:

  • Возобновляемость – этот источник энергии практически не имеет ограничений притом бесплатный. По крайней мере на ближайшие 6.5 миллиардов лет. Нужно подобрать оборудование, установить его и использовать по назначению (в частном доме или коттеджном участке).
  • Обильность – Поверхность земли в среднем получает около 120 тысяч терравват энергии что в 20 раз превышает нынешнее энергопотребление. Солнечные батареи для коттеджей или частных домов имеют огромный потенциал для использования.
  • Постоянство – солнечная энергия постоянна поэтому человечеству не грозит перерасход в процессе ее использования.
  • Доступность – солнечная энергия может вырабатывать на любой территории, при наличии естественного света. При этом чаще всего она применяется для отопления жилища.
  • Экологическая чистота – солнечная энергетика является перспективной отраслью, которая в будущем заменит электростанции, работающие на невозобновляемых ресурсах: газ, торф, уголь и нефть. Безопасны для здоровья людей и домашних животных.
  • При производстве панелей и монтаже солнечных электростанций в атмосферу не происходят значительные выбросы вредных или токсичных веществ.
  • Бесшумность – выработка электроэнергии производится практически бесшумно, и поэтому этот вид электростанций лучше ветровых электростанций. Их работа сопровождается постоянным гулом из-за чего оборудование быстро выходит из строя, а сотрудники должны делать частые перерывы на отдых.
  • Экономичность – при использовании солнечных батарей владельцы недвижимости ощущают значительное снижение коммунальных расходов на электроэнергию. Панели имеют долгий срок службы – производитель дает гарантию на панели от 20 до 25 лет. При этом обслуживание всей электростанции сводится к периодической (раз в 5-6 месяцев) очистке поверхностей панелей от грязи и пыли

Отопление солнечной энергией домов

Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.

Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.

Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.

Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.

Завершают систему солнечного отопления настенные и напольные элементы, в которых по тонким медным трубам, распределенным по всей их площади, циркулирует нагретая жидкость. Благодаря низкой температуре запуска панелей и равномерности теплоотдачи, помещение прогревается достаточно быстро.

Как работает солнечное отопление

Давайте подробно рассмотрим принцип работы солнечных батарей от ультрафиолетового света.

По мере прохождения жидкости через слои системы кинетическая энергия преобразовывается в тепло, которое и используется для отопления дома. Этот процесс циркуляции носителя обеспечивает помещение теплом и позволяет сохранять его в любое время суток и года.

Итак, мы выяснили принцип работы солнечных батарей.

Рекомендации по монтажу и эксплуатации

Эффективность работы солнечной батареи зависит от её ориентации на солнце — максимальная мощность достигается при падении солнечных лучей под прямым углом. Чтобы повысить производительность установки, её размещают на поворотном каркасе. Эта конструкция представляет собой деревянную или металлическую раму, установленную на поворотной горизонтальной оси.

Для максимальной эффективности солнечная панель должна быть сориентирована строго на Солнце. Лучше всего с этой задачей справляются автоматические установки, называемые гелиотрекерами

Постройка гелиотрекера в домашних условиях — чрезвычайно сложная задача, поэтому чаще всего умельцы обходятся простым каркасом с наклонной или зафиксированной рамой

Подключение солнечной батареи к системе автономного электроснабжения следует выполнять посредством контроллера заряда. Это устройство не только правильно распределит потоки электрической энергии, но и предотвратит глубокий разряд АКБ, увеличивая срок её эксплуатации. Все подключения, включая присоединение 220-вольтового инвертора, следует выполнять медными проводами сечением не менее 3–4 кв. мм — это позволит избежать оммических потерь энергии.

Контроллер заряда солнечной батареи позволит ей работать с максимальной токоотдачей и предохранит аккумуляторы от чрезмерного разряда

Напоследок хотелось бы порекомендовать следить за солнечной батареей не только по индикаторам и стрелкам приборов. Помните о том, что загрязнённое стекло может снизить производительность установки на 50% и более. Не забывайте проводить регулярную уборку, и собранная своими руками установка отплатит вам киловаттами совершенно бесплатной, а главное, экологически чистой энергии.

Видео: сборка солнечной панели своими руками

Сегодня нет никаких преград для сборки солнечной панели своими руками. Нет проблем ни с приобретением фотоэлементов, ни с покупкой контроллера или преобразователя энергии. Надеемся, что эта статья станет для вас отправной точкой на пути к автономному дому, и вы наконец-то возьмётесь за дело. Будем ждать от вас вопросов, идей и предложений относительно конструирования и улучшения солнечных батарей. До новых встреч!

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей:

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3 кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии. Если аккумулятор 12 вольт 200 А/ч, то энергии в нём поместиться 12*200=2400 ватт (2,4 кВт).

Но аккумуляторы нельзя разряжать на 100%. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%.

Оптимальный запас ёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10 кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД. Например если у вас аккумулятор на 200 Ач, и вы через инвертор подключаете электрический чайник на 2 кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250 Ампер, и КПД отдачи энергии упадёт до 40-50%. Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220 в) имеет КПД 70-80%. Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись. PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности. А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Выводы и полезные видео по теме

Фильм №1. Демонстрация самостоятельной установки солнечных панелей на крыше дома:

Фильм №2. Выбор аккумуляторов для солнечной системы, типы, отличия:

Фильм №3. Солнечная электростанция для дачи для тех, кто все делает самостоятельно:

Рассмотренные пошаговые практические методы расчета, основной принцип эффективной работы современной солнечной батареи в составе автономной домашней солнечной станции помогут владельцам большого дома в густонаселенной местности и загородного дома в пустыня для обретения энергетического суверенитета.

Вы хотите поделиться своим личным опытом, полученным при строительстве мини-солнечной электростанции или просто батареи? У вас есть вопросы, на которые вы хотели бы получить ответ, обнаруженные недочеты в тексте? Пожалуйста, оставьте свои комментарии в блоке ниже.

Источник – https://sovet-ingenera.com/eco-energy/sun/solnechnye-batarei-dlya-doma.html

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Наш Бастион
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Солнечные панели для частного дома: поставь светло себе на службу

Мощность инвертора и потери в нем

Теперь что касается инвертора, он тоже имеет свой КПД а это порядка 75-90%, т.е. все полученные величины выработки энергии и запаса можно относить к этим процентам. В итоге лучше брать двойной запас емкости для аккумуляторов, Так при потреблении 2400Вт.ч за ночь, устанавливать 4 АКБ емкостью 100А.ч. 100А*12В*4 = 4800Вт.ч. Мощность инвертора показывает номинальную нагрузку которую можно подключить к нему, т.е количество и тип бытовых приборов.

В Итоге получаем солнечную электростанцию на 2,5кВт:

  1. Солнечные батареи 4шт. по 250Вт. Выработка в месяц 170 -240кВт.ч (36тыс.руб.)
  2. АКБ по 100А.ч. 4 шт. запас до 4800 Вт. (AGM аккумуляторы 50тыс.руб.)
  3. Инвертор 2,4кВт номинальная мощность подключаемого оборудования (27тыс.)

Итого 113 тыс. руб. за комплект оборудования.

Выбор системы и ее установка

Перед тем, как остановить свой выбор на определенной отопительной системе, нужно тщательно изучить ее возможности. Обязательным условием будет расчет площади дома, а также необходимого количества тепла, которое уйдет на его обогрев. Также необходимо максимально правильно подобрать место, куда она будет установлена.

Если отопительная система будет установлена правильно, то она прослужит не менее 25 лет. Такая система окупит себя полностью максимум через 3 года. Для многих такой срок наверняка не покажется слишком долгим. К тому же, вы полностью не будете зависеть от коммунальных служб.

Солнечный коллектор должен быть установлен на площади с максимальным солнечным освещением. Если здание непригодно для установки коллектора, такое устройство можно установить на соседнем строении. Накопитель можно разместить в подвале. Нередко встречаются такие системы, где накопителей несколько. В таком случае они будут обладать более компактным размером.

Те, кто выбрал для обогрева своего дома такую отопительную систему, как солнечные батареи, может сказать, что он поступил правильно. Солнечная энергия не стоит денег и, к тому же, является неиссякаемым источником тепла. Все, что нужно, — это вложить некоторые средства в оборудование и установку такой системы, зато потом она себя полностью окупит и избавит вас от зависимости платить деньги коммунальным службам.

Что такое солнечная батарея?

Солнечная батарея – это полупроводниковое устройство, которое преобразовывает солнечное излучение в электрическую энергию. Главной задачей такой системы является надежное, экономное и бесперебойное электроснабжение дома. Такие устройства целесообразно устанавливать в районах, где существуют перебои с подачей от основного источника электроэнергии.


Солнечная электростанция не эффективно работает ночью и в пасмурные дня, в то время как пик электропотребления приходится именно на вечерние часы

Главными преимуществами солнечной батареи являются:

  • простая установка устройства, которая не требует прокладывания кабелей к опорам;
  • система не требует больших временных затрат на свое обслуживание;
  • выработка электроэнергии не оказывает пагубного влияния на окружающую среду;
  • конструкция не имеет подвижных частей;
  • бесшумный режим работы;
  • поставка электроэнергии не зависит от распределительной сети;
  • длительный период эксплуатации системы при минимальных затратах.

Недостатки солнечной батареи:

  • процесс изготовления системы весьма трудоемкий;
  • солнечная панель занимает много места;
  • устройство очень чувствительно к загрязнению;
  • ночью батарея не работает;
  • эффективность работы устройства напрямую зависит от погодных условий, а именно от солнечных и пасмурных дней.


В зимнее время стоит позаботиться о возможности очистки солнечных панелей от изморози и снега

Схема электропроводки от гелиопанелей

Чтобы понять, каким образом солнечная электроэнергия для дома попадает в электросеть и питает бытовые приборы, стоит рассмотреть схему работы солнечного оборудования. Несмотря на кажущуюся сложность, принцип действия схемы является достаточно простым и состоит из четырех этапов.

Солнечные панели являются первым компонентом электрической схемы. Они собираются из заданного количества пластин фотоэлементов в прямоугольные тонкие модули. Мощность фотопанелей может быть разной, однако она всегда делится на 12 вольт.

Для улавливания фотонов плоские панели размещают на открытых для солнечного света пространствах. Мощные солнечные батареи для дома получаются после объединения модульных блоков между собой. Такая батарея предназначена для преобразования солнечной энергии в постоянный ток.

Аккумуляторы служат для накопления электроэнергии, полученной от солнца. В данном случае, если бытовые приборы в доме были подключены к центральной электросети, то генерируемая солнечная энергия накапливается в аккумулирующих устройствах. Кроме того, они запасают излишнее количество электроэнергии, поступающей с гелиопанелей, которая не расходуется в полном объеме.

Задачей аккумулятора является подача необходимого количества электроэнергии и обеспечение стабильности напряжения, когда возрастает ее потребление. Ту же функцию аккумуляторные блоки выполняют в ночное время суток либо при недостатке солнечного света, когда фотопанели не работают.

Последний важный узел схемы электроснабжения от солнечных батарей – это инвертор. Он необходим для преобразования постоянного тока, который подается от солнечных модулей к аккумуляторам, в переменный с напряжением в 220 вольт. Как известно, такой уровень напряжения необходим для работы большинства современных бытовых приборов.

Расчет мощности

Рассмотрим подробно, как рассчитать мощность гелиопанелей. Прежде всего, необходимо вычислить свое потребление. Для этого надо сложить потребляемую мощность всех электроприборов, нагревателей, освещения и прочих потребителей. Сделать это непросто, так как придется вспомнить все мелочи, которых оказывается довольно много.

Стоит отметить, что если планируется установить солнечные батареи на дачу, то как правило, такое решение окупится по причине достаточно небольшой требуемой мощности.

Для простоты рассмотрим пример расчета по готовой сумме потребления. Например, есть частный дом, который потребляет в месяц 300 кВт*час. Это означает, что в день потребление составляет 10 кВт*час. Здесь необходимо определить, сколько солнечных панелей, способных вырабатывать в сутки не менее 10 кВт*час энергии, нужно для дома.

Прежде всего, надо определиться с временем работы системы. Даже самые мощные элементы способны принимать энергию только в определенное время суток. Рабочий период называется пиковыми солнечными часами. Их не следует путать с длительностью светового дня, которая гораздо больше. Однако, утренние и вечерние часы в расчет не берутся, так как для оборудования они непродуктивны.

Как правило, учитывается время с 9 до 16 часов. Этот период можно еще сократить, чтобы скорректировать потери от деградации панелей, изношенного оборудования или АКБ. Допустим, рабочее время панелей в сутки составит 5 часов. При потребности в 10 кВт*час, необходимо, чтобы мощность, вырабатываемая панелями была 2 кВт. Руководствуясь этим значением, можно подсчитать, сколько солнечных батарей нужно для обеспечения дома. Для этого надо изучить технические характеристики разных моделей и выбрать наиболее удачные варианты.

Существуют и другие методы. Можно рассчитать мощность по формуле:

где Рсп — мощность панелей, кВт;

Еп — суточное потребление, кВт*час;

К — коэффициент потерь (1.2–1.4);

Ринс — мощность инсоляции на земной поверхности;

Еинс — среднемесячное значение инсоляции (берется в таблицах).

Эта формула дает достаточно корректный результат, но неподготовленному человеку пользоваться ей трудно. Придется искать величины инсоляции, которые различаются по регионам. Для неопытных людей проще всего использовать онлайн-калькулятор, которых в сети довольно много.

Предположим, что мощность панели 100 Вт, чтобы вычислить количество потребуется 2 кВт поделить на 100, т. о. получается, что нам необходимо купить 20 панелей, чтобы обеспечить дом с потреблением 300 кВт*час в месяц бесплатной энергией.  Есть маломощные модели, по 50 Вт, пригодные для питания осветительных приборов с низким потреблением, но таких уже понадобится в 2 раза больше.  Выбирать устройства необходимо с некоторым запасом, учитывая возможность появления дополнительных потребителей и деградацию оборудования. На практике приходится учитывать также стоимость панелей и условия их работы. Например, если солнечных дней в году мало, оптимальным вариантом станут гибкие модели, хорошо работающие даже в сумерках.

В заключение необходимо напомнить, что самостоятельный расчет мощности — задача трудная даже для профессионалов. Приходится учитывать большое количество факторов, о которых неподготовленный человек даже не имеет представления. Поэтому, лучшим вариантом будет обращение к специалисту, или расчет с помощью онлайн калькуляторе (что несколько хуже).

Виды солнечных модулей-панелей

Солнечные модули-панели собираются из солнечных элементов, иначе – фотоэлектрических преобразователей. Широкое распространение получили два типа ФЭП.

Они различаются типами кремниевых полупроводников, используемых для их изготовления, это:

  • Монокристаллический. Это элементы, полученные путем разрезания искусственно выращенного кристалла кремния на тонкие пластины. Самый производительный и дорогой вариант. Средняя эффективность в районе 17%, можно встретить монокристаллические солнечные элементы с более высокими характеристиками.
  • Поликристаллический. Это солнечные элементы, изготовленные из плавленого кремния путем длительного охлаждения. Простота изготовления делает цену доступной, но производительность поликристаллического варианта не превышает 12%.

Поликристаллические солнечные элементы плоской квадратной формы с неоднородной поверхностью. Монокристаллические разновидности выглядят как тонкие однородные поверхностные структуры квадратов со срезанными углами (псевдоквадраты).

Так выглядят фотоэлектрические преобразователи FEP: характеристики солнечного модуля не зависят от типа используемых элементов – это влияет только на размер и цену

Панели первой модели с одинаковой мощностью больше, чем у второй, из-за меньшей эффективности (18% против 22%). Но в среднем десять процентов дешевле и пользуются преимущественным спросом.

Галерея изображенийФото из Пластины из монокристаллического кремния в несколько раз производительнее поликристаллических аналогов, но значительно дороже: на тыльной стороне пластин кремния проложены токопроводящие линии, на лицевой стороне более дешевые пластины поликристаллического кремния, поэтому он более популярен с независимыми мастерами. Сварка элементов производится аналогично: поликристаллические пластины соединяются в модули, в которых должно быть 36 или 72 штуки. Панели собираются из модульных батарей Монокристаллический элемент солнечной батареи Линии передачи отрицательного тока на пластине Поликристаллические элементы для сборки солнечных батарей Боковые стороны поликристаллических солнечных элементов

С правилами и нюансами выбора солнечных батарей для энергоснабжения для автономного отопления вы можете ознакомиться здесь.

Немного истории

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Рекомендации по монтажу и эксплуатации

Эффективность работы солнечной батареи зависит от её ориентации на солнце — максимальная мощность достигается при падении солнечных лучей под прямым углом. Чтобы повысить производительность установки, её размещают на поворотном каркасе. Эта конструкция представляет собой деревянную или металлическую раму, установленную на поворотной горизонтальной оси.

Для максимальной эффективности солнечная панель должна быть сориентирована строго на Солнце. Лучше всего с этой задачей справляются автоматические установки, называемые гелиотрекерами

Постройка гелиотрекера в домашних условиях — чрезвычайно сложная задача, поэтому чаще всего умельцы обходятся простым каркасом с наклонной или зафиксированной рамой

Подключение солнечной батареи к системе автономного электроснабжения следует выполнять посредством контроллера заряда. Это устройство не только правильно распределит потоки электрической энергии, но и предотвратит глубокий разряд АКБ, увеличивая срок её эксплуатации. Все подключения, включая присоединение 220-вольтового инвертора, следует выполнять медными проводами сечением не менее 3–4 кв. мм — это позволит избежать оммических потерь энергии.

Контроллер заряда солнечной батареи позволит ей работать с максимальной токоотдачей и предохранит аккумуляторы от чрезмерного разряда

Напоследок хотелось бы порекомендовать следить за солнечной батареей не только по индикаторам и стрелкам приборов. Помните о том, что загрязнённое стекло может снизить производительность установки на 50% и более. Не забывайте проводить регулярную уборку, и собранная своими руками установка отплатит вам киловаттами совершенно бесплатной, а главное, экологически чистой энергии.

Видео: сборка солнечной панели своими руками

Сегодня нет никаких преград для сборки солнечной панели своими руками. Нет проблем ни с приобретением фотоэлементов, ни с покупкой контроллера или преобразователя энергии. Надеемся, что эта статья станет для вас отправной точкой на пути к автономному дому, и вы наконец-то возьмётесь за дело. Будем ждать от вас вопросов, идей и предложений относительно конструирования и улучшения солнечных батарей. До новых встреч!

Принцип работы солнечной батареи

Система работает посредством фотоэлектрических преобразователей, которые соединяются в определенной последовательности. Каждый фотопреобразователь состоит из двух кремниевых пластин, которые отличаются типом проводности. Одна покрыта фосфором, в результате чего здесь происходит образование избытка отрицательно заряженных электронов. Другая пластина покрыта бором, что приводит к образованию, отсутствующих в слое отрицательных зарядов, частиц, так называемых «дырок».

Принцип работы неисчерпаемого источника альтернативной энергии заключается в следующем: солнечный свет попадает на отрицательно заряженную панель, что приводит к активному образованию дополнительных «дырок» и электронов. На панели, покрытой фосфором, присутствует электрическое поле, благодаря которому появляется разность потенциалов. Положительно заряженные частицы устремляются в верхний слой, а отрицательно заряженные направляются в нижний. Создается постоянное напряжение. Получается, что один преобразователь работает как батарейка. В цепи возникает постоянный ток, когда к нему присоединяется нагрузка. Каждая батарея покрыта тонкими медными жилками, отводящими ток и направляющими его по назначению.

Сила тока зависит от определенных параметров:

  • размера фотопреобразователя;
  • уровня инсоляции;
  • типа фотоэлемента;
  • общего сопротивления приборов, которые подключены к солнечной панели.


Схема подключения и работы солнечной станции

Из чего сделаны

Чтобы изучить устройство солнечной батареи, нужно разобраться в основных разновидностях, так как технология производства имеет существенные различия в зависимости от используемого сырья:

  1. Батареи CdTe. Теллурид кадмия применяется при изготовлении пленочных модулей. Слоя в несколько сотен микрометров хватает для того, чтобы получить КПД порядка 11% или немного выше. Это откровенно низкий показатель, зато в пересчета на 1 Ватт мощности себестоимость электроэнергии получается как минимум на 30% дешевле, чем у традиционных вариантов из кремния. При том, что данная разновидность намного тоньше и легче.
  2. Тип CIGS. Аббревиатура обозначает, что в состав входят медь, индий, галлий и селен. Получается полупроводник, который также наносится небольшим слоем, но в отличие от первого варианта тут эффективность на порядок выше и составляет 15%.
  3. Типы GaAs и InP отличает возможность нанесения тонкого слоя в 5-6 мкм, при этом КПД будет составлять около 20%. Это новое слово в технологиях добычи электроэнергии из солнечного света. Благодаря высоким рабочим температурам батареи могут сильно нагреваться без потери эксплуатационных характеристики. Но из-за того, что при производстве используются редкоземельные материалы, себестоимость этого типа высока.
  4. Батареи с квантовыми точками (QDSC). В них в качестве поглощающего материала для преобразования солнечной энергии используются квантовые точки вместо традиционных объемных материалов. За счет особенностей настройки запрещенных зон можно делать многопереходные модули, поглощающие солнечную энергию более эффективно.
  5. Аморфный кремний наносится методом испарения и имеет неоднородную структуру. Он не отличается высокими показателями КПД, но однородная поверхность очень хорошо поглощает даже рассеянный свет.
  6. Поликристаллические варианты изготавливаются путем плавления кремния и его охлаждения при определенных условиях, чтобы получить однонаправленные кристаллы. Одно из самых распространенных решений благодаря дешевизне производства и неплохим показателям КПД.
  7. Монокристаллические элементы состоят из цельных кристаллов, разрезанных на тонкие пластинки и легированных фосфором. Самое долговечное решение, у которого низкие показатели деградации и срок службы, составляющий как минимум 30 лет, но чаще всего больше на 10-15 лет.


Батареи из теллурида кадмия – одни из самых выгодных по себестоимости киловатта электроэнергии.

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Подводя итог

При покупке солнечных батарей, российские жители хотят уменьшить затраты на электроэнергию. Коммунальные платежи за электричество самые большие, это касается частных домов и коттеджей. Это будет эффективно только при установке автономной сетевой (подключенной к общей сети электроснабжения). Средний срок окупаемости одной электростанции для дачи 7-8 лет, срок напрямую зависит от тарифа на электроэнергию и географической широты.

Отдельно отметим, что отопительные системы можно сделать своими руками. Однако лучше попросить помощи у друзей, так как оборудование тяжелое и самому переносить его с места на место сложно. Вот, несколько полезных примеров:

Создание солнечного системы, обеспечивающей горячее водоснабжение, электроснабжение и отопление жилого дома.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Наш Бастион
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector