Контроллеры типа ВКЛ/ВЫКЛ
Этот модуль выполняет функцию выключения аккумуляторов от источника при предельных нагрузках. На сегодняшний день, эти контроллеры используются довольно редко и считаются одним из самых примитивных. Принцип действия контроллера построен на постоянном контроле определенных значений генератора и плеча аккумулирующего устройства. Включение контроллера происходит тогда, когда напряжение на батарее будет ниже номинала, либо будет находиться в пределах параметров напряжения. Выключение устройства происходит в том случае, если напряжение превышает лимит нагрузки, которую может выдержать контроллер. Такие контроллеры широко используются в системах с прогнозируемой нагрузкой, к примеру, в системах аварийного освещения и сигнализации (контроллер заряда-разряда hcx-2366).
Измерение характеристик модуля
Мерить мы будем следующее:
- Процесс зарядки — посмотрим, как меняется ток заряда от напряжения на аккумуляторе.
- Разрядку, а точнее умение модуля продолжительно отдавать ток в нагрузку, а так же умение отрубать аккумулятор по достижении порога разряда.
Для этих целей нам понадобится вольтметр и амперметр. Но я рожа ленивая, да и мерить вручную в наш век — мартышкин труд. Поэтому на помощь был позван микроконтроллер PIC18F4550. Он умеет общаться с компом по USB и обладает 10-битным АЦП на борту.
Амперметр и вольтметр далее изображены условно. И вольтметр и амперметр реализованы на дифференциальных усилителях. Для измерения тока использован низкоомный резистор, разность напряжений с выводов которого и снимается дифференциальным усилителем. Такому методу измерения тока недавно была посвящена отдельная статья.
С выходов диф. усилителей сигнал поступает на АЦП микроконтроллера. Шаг АЦП по напряжению составляет около 5 мВ, чего для таких измерений более чем достаточно. Чтобы максимально снизить погрешность, данные приходящие за 10 секунд усреднялись ( по 200 приходящих значений).
2 Структурные схемы контроллеров
Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.
2.1 Вариант #1 – устройства PWM
Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.
Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность
Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.
Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.
Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.
2.2 Вариант #2 – приборы MPPT
Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.
Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами
Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.
Схемой таких устройств реализуются несколько методов контроля:
- возмущения и наблюдения;
- возрастающей проводимости;
- токовой развёртки;
- постоянного напряжения.
А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.
Способы подключения контроллеров
Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.
Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.
Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели
Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.
Техника подключения моделей PWM
Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.
Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий
Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:
- Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
- Непосредственно в точке контакта положительного провода включить защитный предохранитель.
- На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
- Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).
Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.
Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.
Порядок подключения приборов MPPT
Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.
Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками
Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.
Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.
Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.
Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина
Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.
Подключение периферии к аппарату MTTP:
- Выключатели панели и аккумулятора перевести в положение «отключено».
- Извлечь защитные предохранители на панели и аккумуляторе.
- Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
- Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
- Соединить кабелем клемму заземления с шиной «земли».
- Установить температурный датчик на контроллере согласно инструкции.
После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.
Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».
Инструкция по применению
Прежде чем изучить инструкцию по применению контроллера, необходимо запомнить три параметра, которые необходимо соблюдать при эксплуатации данных электронных устройств, это:
- Входное напряжение устройства должно превышать на 15 – 20% напряжение «холостого хода» солнечной панели.
- Для ШИМ (PWM) аппаратов — номинальный ток должен превышать на 10% ток короткого замыкания в линиях подключения источников энергии.
- MPPT — контроллер должен соответствовать мощности системы, плюс 20% от этого значения.
Для успешной эксплуатации прибора необходимо изучить инструкцию по его эксплуатации, которая всегда прилагается к подобным электронным устройствам.
Инструкция информирует потребителя о следующем:
Требования техники безопасности – в данном разделе определяются условия при которых эксплуатация прибора не приведет к поражению потребителя электрическим током и прочим негативным последствиям.
Вот основные из них:
- Перед установкой и настройкой контроллера, необходимо отключить солнечные панели и аккумуляторные батареи от прибора посредством коммутационных аппаратов;
- Исключить попадание воды на электронный прибор;
- Контактные соединения должны быть плотно затянуты, дабы избежать их нагрева в процессе работы.
- Технические характеристики устройства – этот раздел позволяет выбрать прибор по предъявляемым к нему требованиям в конкретной схеме и месте установки.
Как правило, это:
- Виды регулировок и настроек прибора;
- Режимы работы прибора;
- Описываются элементы управления и индикации устройства.
- Способы и место монтажа – каждый контроллер монтируется в соответствии с требованиями завода – изготовителя, что позволяет эксплуатировать устройство продолжительное время и с гарантированным качеством.
Дается информация по:
- Месту и пространственному размещению устройства;
- Указываются габаритные размеры до инженерных сетей и устройств, а также элементов строительных конструкций, по отношению к монтируемому прибору;
- Даются установочные размеры для мест крепления устройства.
- Способы включения в систему – данный раздел объясняет потребителю к какой клемме и как, следует выполнить подключение, для запуска в работу электронного прибора.
Сообщается:
- В какой последовательности следует выполнять включение прибора в рабочую схему;
- Указываются недопустимые действия и мероприятия при включении прибора.
- Настройка прибора – важная операция, от которой зависит работа всей схемы солнечной электростанции, ее надежность.
В данном разделе сообщается о том как:
- Какие индикаторы и как сигнализируют о режиме работы прибора и его неисправностях;
- Дается информация как настроить нужный режим работы устройства по времени суток, режимам нагрузок и иным параметрам.
- Виды защиты – в этом разделе сообщается от каких аварийных режимов защищено устройство.
Как вариант это может быть:
- Защита от короткого замыкания в линии соединяющей прибор с солнечной панелью;
- Защита от перегрузки;
- Защита от короткого замыкания в линии соединяющей прибор с аккумуляторной батареей;
- Неправильное подключение солнечных панелей (обратная полярность);
- Неправильное подключение аккумуляторной батареи (обратная полярность);
- Защита от перегрева устройства;
- Защита от высокого напряжения вызванного грозой или иными атмосферными явлениями.
- Ошибки и неисправности – этот раздел разъясняет как действовать, если по какой-то причине прибор работает неправильно, или вообще не работает.
Рассматривается связь: неисправность – возможная причина неисправности – способ устранения неисправности.
- Поверка и обслуживание – в этом разделе дается информация какие профилактические мероприятия необходимо выполнять, для обеспечения безаварийной работы устройства.
- Гарантийные обязательства – указывается срок, в течение которого прибор может быть отремонтирован за счет производителя устройства, при условии правильной эксплуатации, в соответствии с инструкцией по эксплуатации.
Подбор контроллера по напряжению и току солнечных батарей и акб
Большинство выпускаемых солнечных батарей имеет номинальное напряжение 12 или 24 вольта. Это сделано для того чтобы можно было заряжать аккумуляторные батареи без дополнительного преобразования напряжения. Аккумуляторные батареи появились значительно раньше солнечных батарей и имеют распространённый стандарт номинального напряжения на 12 или 24 вольта. Соответственно большинство контроллеров для солнечных батарей выпускается с номинальным рабочим напряжением равным 12 или 24 вольта, а также двухдиапазонные на 12 и 24 вольта с автоматическим распознаванием и переключением напряжения.
Номинальное напряжение на 12 и 24 вольта достаточно низкое для мощных систем. Для получения необходимой мощности приходится увеличивать количество солнечных батарей и аккумуляторов, соединяя их в параллельные контуры и значительно увеличивая силу тока. Увеличение силы тока ведет к нагреву кабеля и электрическим потерям. Необходимо увеличивать толщину кабеля, возрастает расход металла. Также необходимы мощные контроллеры, рассчитанные на высокий ток, такие контроллеры получаются очень дорогими.
Чтобы исключить возрастание тока, контроллеры для мощных систем делают для номинально рабочего напряжения на 36, 48 и 60 Вольт. Стоит заметить, что напряжение контроллеров кратно по напряжению 12 вольтам, для того чтобы можно было подключать солнечные батареи и акб в последовательные сборки. Контроллеры с кратным напряжением выпускаются только для технологии зарядки ШИМ.
Как видно ШИМ контроллеры выбираются с напряжением кратным 12 вольтам, причем в них входное номинальное напряжение от солнечных батарей и номинальное напряжение контура подключенных аккумуляторов должно быть одинаковым, т.е. 12В от СБ – 12В к АКБ, 24В на 24, 48В на 48В.
У контроллеров MPPT входное напряжение может быть равным или произвольно выше в несколько раз без кратности 12 Вольтам. Обычно MPPT контроллеры имеют входное напряжение от солнечных батарей от 50 Вольт для простых моделей и до 250 вольт для мощных контроллеров. Но следует учесть, что опять же производители указывают максимальное входное напряжение, и при последовательном подключении солнечных батарей следует складывать их максимальное напряжение, или напряжение холостого хода. Проще говоря: входное максимальное напряжение любое от 50 до 250В, в зависимости от модели, номинальное или минимальное входное при этом будет 12, 24, 36 или 48В. При этом выходное напряжение для заряда АКБ у контроллеров MPPT стандартное, часто с автоматическим определением и поддержкой напряжений на 12, 24, 36 и 48 Вольта, иногда 60 или 96 вольт.
Существуют серийные промышленные очень мощные MPPT контроллеры с входным напряжением от солнечных батарей на 600В, 800В и даже 2000В. Данные контроллеры также можно свободно приобрести у российских поставщиков оборудования.
Окромя выбора контроллера по рабочему напряжению, контроллеры следует выбирать по максимальному входному току от солнечных батарей и максимальному току заряда акб.
Для ШИМ контроллера, максимальный входной ток от солнечных батарей будет переходить в зарядный ток АКБ, т.е. контроллер не будет заряжать большим током, чем выдают подключенные к нему солнечные батареи.
В MPPT контроллере все иначе, входной ток от солнечных батарей и выходной ток для заряда акб – это разные параметры. Эти токи могут быть равными, если номинальное напряжение подключенных солнечных батарей равно номинальному напряжению подключенных акб, но тогда теряется суть преобразования MPPT, и эффективность контроллера уменьшается. В MPPT контроллерах номинальное входное напряжение от солнечных батарей должно быть выше номинального напряжения подключенных АКБ оптимально в 2-3 раза. Если входное напряжение выше ниже чем в 2 раза, к примеру, в 1,5 раза, то будет меньшая эффективность, а выше более чем в 3 раза, то будут большие потери на разницу преобразования напряжения.
Соответственно входной ток всегда будет равен или ниже максимальному выходному току заряда АКБ. Отсюда следует, что MPPT контроллеры необходимо выбирать по максимальному зарядному току АКБ. Но чтобы не превысить данный ток, указывается максимальная мощность подключаемых солнечных батарей, при номинальном напряжении контура подключенных АКБ. Пример для контроллера заряда MPPT на 60 Ампер:
- 800Вт при напряжении АКБ электростанции 12В;
- 1600Вт при напряжении АКБ электростанции 24В;
- 2400Вт при напряжении АКБ электростанции 36В;
- 3200Вт при напряжении АКБ электростанции 48В.
Следует заметить, что данная мощность при 12 вольт указана для зарядного напряжения от солнечных панелей в 13 — 14 Вольт, и кратна для остальных систем с напряжениями на 24, 36 и 48вольт.
Настройка схемы
Перед началом настройки временно разорвите цепь выхода компаратора U1-2.
Вместо термистора подключите сопротивление 8.2 кОм, примерно равное сопротивлению 10-килоомного термистора при температуре 25 градусов Цельсия. Если вы не планируете использовать термокомпенсацию точки максимальной мощности, или расстояние от панели до контроллера больше 2 метров, резисторы R15, R17 и термистор R16 могут быть удалены без ущерба для работоспособности схемы. При этом резистор R4 подключается к плюсовой шине.
Операции настойки выполняются в следующей последовательности:
- Подключите к выходу контроллера заряженную примерно на 50-60% аккумуляторную батарею небольшой мощности, например 7 А·ч от источника бесперебойного питания. Как правило, такие аккумуляторы есть в арсенале мастера.
- Проверьте наличие опорного напряжения 8 В.
- Подключите к входу контроллера регулируемый источник 10-24 В с током до 2 А через сопротивление 5 Ом, имитируя подключение солнечной батареи.
- Медленно поднимая напряжение, контролируйте состояние выхода компаратора U1-1. Если при напряжении, равном номинальному напряжению панели, например 17.2 В, с которой будет использоваться контроллер, на выходе U1-1 все еще будет высокий потенциал, регулируем R5 до возникновения автоколебаний.
- Далее контролируя напряжение на конденсаторе С1 и увеличивая входное напряжение, убеждаемся, что напряжение на конденсаторе С1 остается неизменным и равным номинальному напряжению солнечной панели. При помощи осциллографа убедитесь, что форма сигнала на стоке Q3 близка к показанной на Рисунке 3.
- Напряжение на аккумуляторе начнет расти. Когда оно достигнет 14.5 В, прекратите настройку, отключите аккумулятор и источник питания. Восстановите соединение выхода компаратора U1-2 с элементами схемы.
- Подключите аккумулятор и источник питания. Если форма импульсов изменилась, и ток заряда резко упал, регулируйте R10 до тех пор, пока изменение ограничения зарядного тока не будет наступать при напряжении на заряжаемом аккумуляторе 14.4 В.
Рисунок 3. | Форма сигнала на стоке MOSFET Q3. |
На этом настройка может считаться законченной.
Как сделать своими руками
При необходимости имея представление об электронных приборах, умея работатьпаяльником и способность изготовить печатную плату для монтажа комплектующих, можно изготовить контроллер заряда самостоятельно. Это будет простейший из видов контроллеров, который обладает незначительной мощностью и малым набором регулировок и настроек.
В основу работы подобного устройства заложен принцип – когда напряжение на аккумуляторной батарее достигает установленного уровня, зарядка прекращается, и при снижении напряжения на клеммах аккумуляторов – зарядка возобновляется.
Подобный прибор может быть собран по следующей схеме:
Контроллер заряда собранный по данной схеме будет обладать следующими характеристиками:
- Напряжение заряда аккумулятора регулируется, номинальная величина – 13,8 В;
- Отключение потребителя настраивается, номинальное значение – 11 В;
- Включение нагрузки при напряжении на аккумуляторе в 12,5 В.
Электронные компоненты схемы могут быть заменены на аналоги, без изменения физических свойств.
Как грамотно выбрать контроллер заряда аккумулятора?
Для того, чтобы выбрать нужный контроллер, необходимо определиться с функцией, которую будет нести данное устройство и с масштабом всей установки. Если предполагается сборка небольшой солнечной системы, которая будет контролировать бытовые приборы с мощностью не более двух киловатт, то достаточно установки PWM контроллера. Если же речь идет о более мощной системе, которая будет контролировать сетевое электричество и работать в автономном режиме, тогда необходима установка MTTP контроллера. Все зависит от напряжения которое поступает на контроллер аккумулирующего устройства. PWM-контроллера способны выдержать показатели до 5 кВт, в свою очередь MTTP-модули выдерживают до 50 кВт.
Структурные схемы контроллеров
Разбираться в принципиальных схемах приборов могут не все пользователи. Но это и не обязательно, вполне достаточно понять принцип их работы на уровне блоков или узлов прибора. Рассмотрим структурные схемы двух разновидностей контроллеров:
Устройства PWM
После этого ток проходит через блок из двух силовых транзисторов, где происходит преобразование значений напряжения и тока. Управление этими процессами производится через микросхему драйвера, при помощи чипа контроллера. Сам драйвер предназначен для коррекции режима работы транзисторов. Одна из основных задач — регулировка уровня мощности нагрузки, предотвращающая глубокий разряд аккумуляторов.
Помимо этих компонентов в состав схемы входит датчик температуры. Он обеспечивает поддержание заданного температурного режима работы прибора, ограничивая его мощность по необходимости. Перегрев весьма опасен для контроллера, поэтому датчик относят к основным узлам схемы.
Приборы MPPT
Контроллер заряда аккумулятора от солнечной батареи, созданный по схеме MPPT, представляет собой более сложное устройство, чем PWM. Увеличено количество узлов и деталей, поскольку более тщательное выполнение алгоритмов работы требует определенных ресурсов. Основная функция устройства заключается в определении максимальной мощности солнечных батарей в текущих условиях и соответствующей перенастройке их работы.
Производится определение точки максимальной мощности (ТММ), определяющей напряжение, при котором выходные показатели будут максимально высокими. Заряд АКБ происходит в 4 этапа:
- объемный. Это первый этап после ночного перерыва. Аккумуляторы активно накапливают энергию, используя всю энергию солнечных батарей
- повышающий. Начинается сразу по достижении максимального заряда аккумуляторов. Напряжение заряда снижается, чтобы исключить нагрев и выделение газов. Этот режим, как правило, длится 1-3 часа, после чего следует переход на следующую стадию зарядки
- плавающий. Этот этап необходим для поддержания заряда на максимальном уровне и недопущения перегрева или газоотделения, а также снижения количества накопленной энергии. Если нагрузка начинает требовать повышенной отдачи, контроллер переводит систему из плавающего режима в повышающий. Как только мощность на выходе упадет, будет вновь задействован плавающий режим
- выравнивание. Этап, при котором происходит выравнивание плотности электролита, восстановление состояния электродов, переработка сульфата свинца
Работа контроллеров MPPT зависит от окружающей температуры. В жару выработка энергии падает, при сильном охлаждении процессы в аккумуляторах замедляются, что грозит выходом их из строя. Встроенный датчик температуры постоянно контролирует состояние и дает команду на соответствующую корректировку режима работы.
Использование контроллеров MPPT рекомендовано при мощности системы от 200 В или при нестабильном производстве энергии. Постоянное определение максимальной эффективности улучшает работу комплекса и позволяет обходиться без установки дополнительных модулей.