Зависимость сопротивления теплопередаче от плотности бетона
Для обозначения способности материала проводить тепло применяется коэффициент теплопроводности. Данная величина является относительной и указывает на количество тепла, способное пройти в течение 1 часа через материал, который имеет толщину 1 метр, площадь 1 кв. м при разнице температуры по обеим сторонам в 1° С.
У конструкционных видов пенобетона способность проводить тепло самая высокая и составляет от 0,38 до 0,26. Конструкционно-теплоизоляционные марки имеют следующие коэффициенты: у Д1000 данный показатель находится в пределах 0,23-0,29, у Д800 – 0,18-0,22, Д700 имеет коэффициент в пределах 0,16-0,18, а теплопроводность пеноблока Д600 составляет 0,13-0,14. Теплоизоляционные марки блоков имеют следующие характеристики: теплопроводность пеноблока Д500 находится в пределах 0,10-0,12, Д400 – 0,09-0,10, а Д300 — 0,8.
Сравнение теплопроводности пеноблока разных марок и видов приведено в таблице, размещенной ниже.
Разница величины коээфициента у одной и той же марки пенобетона может зависеть от того, какие составляющие применялись для замешивания бетона. Так, например, если в составе блоков Д500 будет песок, значение коэффициента будет равно 0,12, если же в смесь была добавлена зола, показатель уменьшится до 0,10. Чем выше марка вспененной бетонной смеси, тем разница в коэффициентах будет выше. Если для Д600 отличие будет составлять всего 0,2, то у Д1200 разница может доходить до 0,9
Поэтому при покупке данного строительного материала следует обращать внимание не только на маркировку, но и на состав смеси
Таблица теплопроводности пеноблоков с сравнением показателей в зависимости от составляющих, которые были использованы для замешивания раствора, приведена ниже.
Расчет теплопроводности стен из пенобетона
Чтобы дом имел необходимые характеристики теплопроводности, пеноблоки разной плотности следует укладывать на различную толщину. Рассчитать оптимальную толщину стены можно следующим образом.
Следует определиться с тем, при помощи чего будет проводиться возведение стен. Чаще всего применяется два варианта: кирпич-блок-штукатурка и оштукатуренный с двух сторон блок.
Чтобы провести расчеты следует знать коэффициенты теплопередачи материалов, которые будут входить в состав стены (кирпич – 0,56, штукатурка — 0,58, блоки определяем по таблице) и коэффициент сопротивления стен теплопередаче (как правило, среднее значение равно 3,5). Из общего значения 3,5 необходимо вычесть значение сопротивления теплопередаче 20 мм штукатурки (0,02:0,58 = 0,03) и 120 мм кирпича (0,12: 0,56 = 0,21) для первого варианта или 40 мм штукатурки (0,04:0,58 = 0,06) для второго варианта исполнения.
В первом случае, при использовании кирпича, бетонная стена должна обеспечить сопротивление теплопередаче на уровне 3,26. При использовании марки Д600 толщина ее будет составлять 456 мм (3,26*0,14 = 456), в случае использования Д800 следует выложить стену толщиной не менее 684 мм (3,26*0,21 = 684). По этой же формуле можно рассчитывать стены с использованием любой марки ячеистого бетона.
Для варианта стены, оштукатуренной с двух сторон, из значения 3,5 отнимаем 0,06 (40 мм штукатурки) и далее проводим расчеты для нужной марки бетона согласно таблице, в которой проведено сравнение показателей теплопроводности.
Не будет большим преувеличением утверждение, что в современных условиях использование пенобетона считается преобладающим в индивидуальном строительстве. И востребованность этого относительно нового для отечественного рынка строительного материала обусловлена не только фактором стоимости. Его технические характеристики по многим параметрам оказались намного лучше традиционного кирпича и классического бетона/железобетона.
Технология кладки блоков из ячеистого бетона
Монтаж бетонных пористых блоков проводится на специальный клеевой раствор, который замешивается непосредственно перед укладкой материала. Чтобы избежать образования трещин используется терка для шлифовки, с помощью которой заглаживаются все неровные поверхности.
Блоки для кладки приобретаются одного вида, размера и марки плотности. Монтаж ячеистого бетонного материала имеет несколько особенностей:
- изначально укладываются угловые элементы, которые постепенно расходятся по периметру;
- чтобы избежать образования трещин каждый четвертый ряд кладки армируется;
- если строительные работы проводятся при температуре меньше пяти градусов ниже нуля, то в клей добавляются противоморозные вещества, которые способствуют сцеплению бетона при низком температурном режиме.
От правильного монтажа первого ряда блоков зависит дальнейшая точность всей кладки. Поэтому перед установкой следует тщательно измерить вертикальность и горизонтальность граней. Начиная со второго ряда, кладка проводится с перевязкой предыдущих швов.
Особое внимание следует уделить транспортировке и хранению ячеистого материала. Упаковка должна надежно защищать изделия от проникновения влаги и во время перевозки блоки правильно фиксироваться, чтобы не допустить трещин и отколов
Общее описание материала, особенности состава и технологии производства
Как уже говорилось, бетон ячеистый– это группа материалов. Представителями ее являются пено- и газобетон, а также пеногазобетон, сочетающий в себе обе технологии изготовления и, как следствие, свойства.
Такие блоки получают из смеси цемента, извести, песка, порообразователя, пластификатора и иных добавок, повышающих качества будущего материала.
Газоблок: состав
- По сути, это смесь кремнеземистого компонента, жидкости, вяжущего и добавок, вызывающих вспучивание раствора и, как следствие, образование ячеек.
- В качестве кремнеземистого компонента могут выступать не только песок, но и зола высокоосновная, и иные отходы промышленности.
- Основным вяжущим, помимо цемента, может быть: шлак, смешанное вяжущее, зола, известь.
- Цемент, как правило, должен использоваться марки не ниже 400-500.
- Песок преимущественно добавляют кварцевый.
- Пластификаторы применяются с целью повышения пластичности раствора. В этом случае, блоки получаются лучшего качества. Они защищены от растрескивания на этапе производства.
- Если говорить о пеноблоке, то образование ячеек в растворе происходит за счет добавления пенообразователя. В случае с газоблоком, все несколько иначе. Поры образуются в следствие реакции алюминиевой пудры и извести негашеной.
В результате структура пор у материалов разная: у пеноблока – закрытая, а у газоблока – открытая. Это также повлияло на некоторые значения свойств.
Структура пено- и газобетона
Пропорции компонентов
Повысить прочность можно при помощи некоторых приемов — вот несколько из них:
- Применение специализированных добавок;
- Использование в качестве кремнеземистого компонента песка, а не золы.
- Добавление большего количества вяжущего в процентном соотношении;
- Автоклавная обработка делает материал более прочным и устойчивым к механическим воздействиям.
Что касается процесса производства, то выпуск обоих видов блоков аналогичен.
- Первым делом замешивают раствор, который потом отправляется в формы.
- Наполняются они примерно на одну треть, так как вспучивание смеси может привести к перетеканию.
- После завершения процесса порообразования, продукция должна немного застыть.
- Далее производят распалубку.
- Последний этап зависит от того, какой метод твердения будет использован. Это может быть автоклавная обработка или сушка в естественных условиях.
Несколько слов об используемом оборудовании. В случае, если пено-, газоблоки производятся в заводских условиях, варианта может быть два: набор машин конвейерного типа либо стационарная линия оборудования.
В первом случае, производство будет максимально рентабельным, автоматизированным, объем продукции может достигать и 200, и 300 кубов в сутки.
Элемент линии конвейерного типа
Во втором случае объем будет значительно меньше, да и вмешательство сторонних рабочих понадобится, а вот цена – более бюджетная.
Стационарная линия
Если блок стеновой изготавливается в домашних условиях, обойтись можно вполне комплектом из форм и смесителя. Также можно приобрести мобильную установку, с ней удастся произвести выпуск до 20 м3 в сутки.
Область применения
Высокие технические характеристики ячеистых блоков расширили сферу применения материала на строительном рынке. Основные виды строительного материала используют при строительстве малоэтажных и производственных зданий. Блоками выкладывают несущие, самонесущие и ненесущие стены, стеновые перегородки, из них изготавливают элементы конструкций строения. Благодаря низкой теплопроводности, его используют в качестве утеплителя полов, кровли, стен.
Плотность бетона разная, зависит от количества пор – чем больше ячеистость, тем выше тепловые и звукоизоляционные характеристики, но меньше плотность. При маленькой ячеистости все с точностью до наоборот. Такие характеристики упрощают применение бетона, позволяя учитывать нюансы индивидуального строительства.
Сравнение теплопроводности газоблока с другими материалами
Коэффициент теплопроводности газобетонных блоков, как и любого другого материала, характеризует его возможность проводить тепло. Численно он выражается плотностью теплового потока при определённом температурном градиенте. Способность удерживать тепло зависит от влияния таких факторов, как:
- степень паропроницаемости;
- плотность материала;
- способность усваивать тепло;
- коэффициент водопоглощения.
Последнее особенно хорошо видно в представленной ниже таблице:
Марка газобетона по плотности | Теплопроводность газоблока в сухом состоянии (Вт/м*С) | Коэффициент теплопроводности газобетона при влажности до 6% (ВТ/м*С) | Теплоемкость газобетона (Вт/м²*С) за 24 часа | Паропроницаемость (мг/м ч Па) |
d400 | 0,09 | 0,14 | 3,12 | 0,23 |
d500 | 0,11 | 0,16 | 3,12 | 0,20 |
d600 | 0,12 | 0,18 | 3,91 | 0,17 |
D700 | 0,14 | 0,19 | 3,91 | 0,16 |
Как видите, чем более плотная у бетонного камня структура, тем меньше он пропускает пара и больше тепла. Поэтому, выбирая материал для строительства дома, не стоит стремиться покупать блоки с запасом прочности без необходимости.
Чем обусловлена теплопроводность
Теплопроводность газобетонного блока во многом обусловлена структурой материала, который более чем на 80% состоит из заполненных воздухом пор. Воздух является лучшим утеплителем, благодаря его присутствию меняется характеристика бетонного камня. Влажность воздуха тоже оказывает влияние на показатели теплопроводности – они будут тем ниже, чем суше климат.
Очень важно предварительно сделать теплотехнический расчет стены из газобетона – чтобы в итоге проживание в доме не оказалось некомфортным. При этом обязательно учитывают параметры применяемых для кладки блоков, округляя итоги в большую сторону до ближайшего показателя толщины.
Теплопроводность готовой стены может отличаться от теплопроводности газобетона d400, если, к примеру, блоки смонтировали не на клею, и на растворе
Затвердевшая пескоцементная стяжка имеет коэффициент теплопроводности 0,76 Вт/м*С – и это при расчётном коэффициенте газобетона этой марки 0,12 Вт/м*С!
Разница очевидна, и не надо быть великим специалистом, чтобы понять, что тепло будет уходить если не через блоки, то через их стыки. Вывод напрашивается сам: чем тоньше слой, тем лучше. А это возможно только при использовании тонкослойных клеёв.
Это же касается и армирующего пояса из тяжёлого бетона. Чтобы он не оказался одним большим мостом холода, монтировать его лучше по несъёмной опалубке. Её роль исполняют газобетонные U-блоки, внутрь которых укладывается арматура и производится уже заливка обычного бетона.
Коэффициент теплопроводности газобетона: всё познаётся в сравнении
Низкая теплопроводность газобетонных блоков даёт возможность получить экономию не только за счёт уменьшенной толщины стен и ширины фундамента, но и снизить расходы на эксплуатацию дома. Ведь для поддержания комфортной температуры в помещениях будет тратиться гораздо меньше электричества или газа.
Как этого добиться, мы расскажем чуть позже, а пока предлагаем оценить теплопроводность газоблока в сравнении с другими материалами:
Характеристика | Газобетон | Пенобетон | Керамзитобетон | Полистиролбетон | Пустотелый кирпич | Керамоблок | Древесина |
Плотность кг/м³ | 300-600 | 400-700 | 850-1800 | 350-550 | 1400-1700 | 400-1000 | 500 |
Теплопроводность Вт/м*С | 0,08-0,14 | 0,14-0,22 | 0,38-0,08 | 0,1-0,14 | 0,5 | 0,18-0,28 | 0,14 |
Как видите, теплопроводность газобетона в сравнении с группой популярных теплоэффективных материалов стен соответствует показателю древесины. Из кладочных материалов конкурировать с ним могут только пенобетон и полистиролбетон.
Особенности и плюсы
Уникальной особенностью ячеистого бетона как строительного материала является гармоничное сочетание качеств камня и древесины. Этот материал обладает всеми полезными качествами строительного камня: высокая прочность на сжатие, успешное противостояние повышенной влажности, негорючесть. Наряду с этим он обладает и уникальными свойствами древесины: прекрасно обрабатывается режущим инструментом, имеет легкий вес и очень низкую теплопроводность.
- Строения, возведенные из ячеистого бетона, прекрасно зарекомендовали себя в различных климатических зонах, поскольку обеспечивают комфортную температуру при минимальных затратах теплоносителя.
- Ячеистый бетон в зависимости от плотности применяется в качестве несущих конструкций, легко выдерживающих вес перекрытия, для возведения межкомнатных перегородок, а также в качестве утепляющего материала при строительстве многослойных стен.
- Точность размеров блоков дает возможность отказаться от применения цементного раствора при возведении стен. Укладка блоков осуществляется на специальный клеящий состав, приготовленный из сухих смесей, что позволяет значительно уменьшить теплопроводность стен, не создавая «мостов холода»
- Этот материал обеспечивает высокую звукоизоляцию здания без проведения дополнительных мероприятий для ее улучшения.
Минусы, недостатки блоков из ячеистого бетона
Единственным минусом этого материала является хрупкость и недостаточная прочность, что в особенности касается пенобетона. Но при правильном инженерном расчете конструкций удается обеспечить высокую долговечность и полную безопасность сооружений при воздействии на них стихийных климатических условий.
Зависимость от влажности
Влияние влажности на теплопроводность газобетона. Формирование из блоков наружных стен сооружений предполагает взаимодействие, в первую очередь, с переменчивой влажностью окружающей среды. Хотя гигроскопичность материала достаточно низкая, однако, его структура все же подвержена впитыванию влаги. Реальные теплоизоляционные свойства изделий становятся несколько ниже, чем в стандартных условиях измерений. Величина равновесной эксплуатационной влажности наружных газобетонных стен может составлять до 10%. Поэтому, например, стандартный коэффициент теплопроводности, равный 0,12 Вт/(м °С) для блоков марки D500 в стандартных условиях, отличается от величины в условиях эксплуатационной влажности на 0,2 Вт/(м °С) и больше. Однако, это не много по сравнению, к примеру, с пустотелым строительным кирпичом, для которого в аналогичных условиях величина данного показателя ухудшается на 70-90%.
Достоинства пористого композита
Блоки из ячеистого бетона обладают множеством положительных свойств. Основные плюсы:
- Способность проводить тепло. По теплопроводности материал близок к древесине, но отсутствует ограничение на ширину возводимых стен. При толщине стен, построенных из композитов, соответствующих размерам кирпичной кладки, обеспечивается благоприятный тепловой режим помещения. Целостность, однородность конструкции здания обусловлена отсутствием потребности в специальных утеплителях. Это актуально для постройки частных объектов, где застройщик заинтересован экономить тепло и, естественно, материальные ресурсы.
- Экономичность. Незначительный вес пористого изделия, которое легче кирпича, позволяет минимизировать расходы на строительно-монтажные мероприятия и обустройство фундамента. Композит не требует дополнительного утепления, а применение специальных клеящих составов позволяет достичь экономии при кладке.
Достоинства ячеистого бетона
- Возможность пропускать насыщенный паром влажный воздух. С возрастанием коэффициента паропроницаемости улучшается микроклимат. Помещение из пористого бетона обеспечивает комфорт зимой и прохладу летом. Вентилируемость постройки снижает вероятность образования плесени, грибка.
- Устойчивость к воспламенению. Ячеистые блоки обладают высокой огнестойкостью, чем отличаются от древесины. Отпадает необходимость в дополнительной защите от воспламенения. Материал применяют как огнеупор.
- Увеличенная точность геометрических размеров. Допуски составляют ± 2 миллиметра, что позволяет выполнять минимальную толщину кладочного шва, уменьшить расход клеевой смеси, увеличить тепловую изоляцию стен.
Что выбрать: пенобетон или газобетон?
Разберемся, какие блоки ячеистого бетона лучше? Сложно однозначно ответить на вопрос. Ответ зависит от условий, где планируется использовать стеновой материал. Рассмотрим главные моменты:
Газобетон целесообразно использовать для возведения несущих стен. Он обладает повышенной прочностью.
Таблица сравнения основных свойств пенобетона и газобетона
- По способности противостоять отрицательным температурам оба состава имеют равные свойства.
- Пенобетон менее гигроскопичен, превосходит газобетон по степени водопоглощения.
- Газобетон дороже, что связано с автоклавным методом производства.
Характеристики блоков из ячеистого бетона подтверждают экономическую целесообразность применения газобетона для возведения несущих конструкций. Вспененный состав используется для утепления и строительства перегородок помещений.
Теплопроводность блоков из пенобетона
Одной из наиболее важных характеристик любого строительного материала является его теплопроводность. Данный показатель говорит о способности отдавать тепло. Чем выше значение коэффициента теплопроводности, тем быстрее будет уходить тепло из дома или любой другой постройки зимой и тем быстрее будет нагреваться здание летом. При изготовлении пеноблока в смесь из воды, песка и цемента добавляется специальный пенообразователь. Благодаря этому блоки из пенобетона имеют пористую структуру. На следующем фото вы можете увидеть, как выгладит блок внутри. В распределенных равномерно по всему объему порах находится воздух, который имеет достаточно низкий показатель теплопроводности. Именно этим и объясняется способность пенобетона удерживать тепло.
Если сравнивать данный показатель у нескольких строительных материалов, ячеистый бетон значительно превосходит обычный бетон, кирпич, и лишь немного уступает дереву. Низкий коэффициент теплопроводности пеноблока, его сравнительно невысокая стоимость, прочность и долговечность вывели его на одну из лидирующих позиций по использованию в строительстве.
Таблица
Сравнение показателей теплопроводности различных строительных материалов вы можете увидеть в таблице, размещенной ниже.
Кирпич как изолятор
Далее для сравнения рассмотрим характеристики в отношении теплопроводности и этого популярного строительного материала. По прочностным качествам кирпич не только не уступает бетону, но зачастую и превосходит его. То же самое касается и плотности этого строительного камня. Весь используемый сегодня при возведении зданий и сооружений кирпич классифицируется на керамический и силикатный.
Обе этих разновидности камня в свою очередь могут быть:
- полнотелыми;
- с пустотами;
- щелевыми.
Конечно же, полнотелые кирпичи задерживают тепло хуже пустотных и щелевых. Теплопроводность кирпича
Кирпич | Полнотелый силикатный/керамический | Силикатный/керамический с пустотами | Щелевой силикатный/керамический |
Коэффициент теплопроводности Вт/(м°С) | 0,7-0,8/0,5-0,8 | 0,66 /0,57 | 0,4/0,34-0,43 |
Теплопроводность бетона и кирпича, таким образом, практически одинакова. Как силикатный, так и керамический камень изолируют помещения от холода довольно-таки слабо. Поэтому дома, возведенные из такого материала, следует дополнительно утеплять. В качестве изоляторов при обшивке кирпичных стен так же, как и залитых из обычного тяжелого бетона, чаще всего применяются пенополистирол или минеральная вата. Можно использовать для этой цели и пористые блоки.
Основные свойства ячеистого бетона, характеристика
Ячеистый бетон стал достойной альтернативой традиционному кирпичу. Технология его производства позволяет добиться удивительных характеристик: низкая теплопроводность, отличная шумоизоляция, малый вес. Ячеистый легкий бетон создает небольшую нагрузку на фундамент, что позволяет сократить расходы, необходимые для его обустройства и остальных строительных операций.
Ячеистый бетон наиболее выгодно применять для самонесущих стен.
Ячеистый бетон может иметь разную пористость. Показатель пористости напрямую зависит от пропорции исходных компонентов, используемых для изготовления этого материала. С увеличением количества пор повышаются теплоизолирующие свойства ячеистого бетона, но при этом уменьшается его прочность и, наоборот, с увеличением плотности ухудшается теплоизоляция, но растет прочность.
По способу образования пор все ячеистые бетоны делятся на два вида: газобетон и пенобетон. На вопрос: «Пенобетон или газобетон – что лучше?» трудно ответить однозначно. И тот, и другой материал предназначен, прежде всего, для возведения стен, внутренних перегородок и т. п. Но, технологии производства пенобетона и газобетона сильно отличаются. Пенобетон можно делать маленькими партиями в домашних условиях, а газобетон можно выпускать лишь в заводских условиях.
И из пенобетона, и из газобетона можно делать строительные блоки. Пенобетонные блоки отличаются от газобетонных по цвету. Первые – темно-серые, а вторые – светло-серые, поскольку для их изготовления используется известь. Блоки из пенобетона намного тяжелее и имеют гладкую поверхность, поэтому их сцепление со строительным раствором довольно низкое. Чтобы понять, что лучше: пеноблок или газоблок, необходимо учитывать, что пенобетон сильнее впитывает влагу и хуже держит тепло. Кроме того, пенобетон намного слабее газобетона выдерживает нагрузки на сжатие.
Сравнительные характеристики кладочных материалов
Строительство дома из пеноблоков.
Итак, для наглядности составим таблицу основных показателей ячеистого бетона в сравнении с другими аналогами.
Возьмем самые востребованные материалы для строительства жилых домов: кирпич, керамзито- и газобетон:
Показатели | Кирпич (глиняный и силикатный) | Керамзитобетон | Газобетон | Пенобетон |
Вес 1 м3 (кг) | 1200–2000 | 500–900 | 90–900 | 90–900 |
Плотность (кг/м3) | 1550–1950 | 900–1200 | 300–1200 | 300–1200 |
Теплопроводность (Вт/м*К) | 0,6–1,15 | 0,75–0,98 | 0,07–0,38 | 0,07–0,38 |
Водопоглощение (% к массе) | 12–16 | 18 | 20 | 14 |
Морозостойкость (кол-во циклов) | 25 | 25 | 35 | 35 |
Прочность на сжатие (Мпа) | 2,5–30 | 3,5–7,5 | 0,15–25,0 | 0,1–12,5 |
Исходя из таблицы, сделаем выводы по преимуществам пенобетона:
По массе пеноблоки равны только газобетону (см. Газобетон или пеноблок: рассмотрим что лучше), малый вес облегчает транспортировку и переноску. А если учесть значительные размеры блоков, то укладку и сокращение сроков строительства.
1 м3 пеноблоков весит меньше, чем аналог из других материалов.
По теплопроводности пено- и газоблоки не имеют себе равных, а это значит, что дом из этих материалов более эргономичен, в нем всегда будет тепло и уютно при небольших затратах на отопление.
Благодаря пористой структуре, пенобетон обладает высокой теплоизоляцией.
Поглощение воды у пенобетона значительно меньше, чем у других аналогов, значит, уменьшается риск проникновения влаги внутрь помещения, а, соответственно, отсыревание стен, образование грибка, плесени и прочее.
Морозостойкость у пенобетона выше, чем у кирпича или керамзитобетона.
Пенобетон работает на сжатие немного хуже, чем кирпич или газобетон, но этот показатель зависит от марки пеноблоков – чем она выше, тем крепче стена. Увеличить данный параметр можно установкой дополнительной арматуры при кладке.
Армирование кладки повышает прочность пеноблока.
Особо надо сказать о стоимости этого материала, цена на пеноблоки в 2–3 раза ниже, чем на другие строительные материалы.
Коэффициент теплопроводности
Коэффициент теплопроводности – способность газобетона передавать тепловую энергию. То есть, чем выше этот коэффициент, тем быстрее строительный материал отдаст тепло окружающей среде и сделает помещение холодным. Чтобы не тратиться на дополнительный обогрев жилья в зимнее время года, стоит заранее продумать выбор материала для строительства и способы утепления.
Более пористая структура делает газобетон менее теплопроводным, но при этом хрупким. Разные маркировки газобетонных блоков характеризуют их свойства в зависимости от плотности. Так, теплопроводность газобетона d300, d400 меньше теплопроводности блоков с маркировкой d500, d600. Поэтому первые чаще всего используют в качестве теплоизоляции строений, но из-за хрупкости не применяют в возведении несущих конструкций. Для строительства жилых многоэтажных зданий подойдет более плотный газобетон d1000-d1200. Средний по плотности и изоляционным свойствам блок используют при строительстве одноэтажных зданий.
Сравнить теплопроводность газобетона разных марок можно в таблице:
Маркировка | Теплопроводность, Вт/м °C, 0% влажности | Теплопроводность, Вт/м °C, 4% влажности | Теплопроводность, Вт/м °C, 5% влажности |
D300 | 0,072 | 0,084 | 0,088 |
D400 | 0,096 | 0,113 | 0,117 |
D500 | 0,112 | 0,141 | 0,147 |
D600 | 0,141 | 0,160 | 0,183 |
D700 | 0,15 | — | — |
D800 | 0,21 | — | — |
D900 | 0,24 | — | — |
D1000 | 0,29 | — | — |
D1100 | 0,34 | — | — |
D1200 | 0,38 | — | — |
Что такое теплопроводность?
Стены зданий предназначены стабилизировать комфортную температуру внутри помещений. Высокая теплопроводность стен холодной порой года будет быстро передавать тепло отопления наружу. Стоимость потребленных энергоресурсов вырастет, однако, жилое строение будет по-прежнему холодным. По этой же причине жаркие дни станут причиной внешнего нагрева стен. Материал передаст тепло внутрь строения, потребовав непременного охлаждения воздуха. Газобетону присущи иные свойства.
Само название подтверждает, что объем материала равномерно заполнен порами. Примерно 85% тела блоков — пустоты. Они заполнены воздухом, именно поэтому изделия имеют незначительный вес. По этому параметру продукция объединяет качества дерева, камня. Как известно «запертый» воздух является плохим проводником тепла. Значит, структура материала обладает ярко выраженной низкой теплопроводностью.
Показатель имеет наименьшую величину среди используемых стеновых материалов. Термин “теплопроводность” определяет способность передавать тепло внутри материала от одной более нагретой части объема к другой менее нагретой за счет теплового движение молекул. Измерение производится в Вт/(м °С). Показатель имеет название — коэффициент теплопроводности.
Фактически речь идет о количестве теплоты, которая передается через грань образца объемом 1 м. куб. за установленное время (например, 1 час) при формировании разности температур в 1 градус на противоположных сторонах. Технология изготовления газобетона задает макроструктурное качество, характеристики плотности, влажности материала. Именно от этих параметров зависит теплопроводность продукции.