Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность
Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материалов
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться
Основные параметры, от которых зависит величина теплопроводности
Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:
Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором. Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов. Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
Влажность – злокачественный фактор, повышающий скорость прохождения тепла
Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере
Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.
описание различных пород, необходимость таблицы коэффициентов теплопроводности
Древесина — экологически чистый и практичный материал. Дерево активно применяется для внутренней отделки помещений. Материал также используется в строительстве загородных домов и заведений для туристов, в которых большую роль играет экологичность здания
При строительстве важно учесть теплопроводность дерева и многие другие параметры. Внутренняя отделка тоже требует внимания к характеристикам, ведь породы по-разному реагируют на тепло и влагу
Разновидности и использование древесины
В строительстве применяются разнообразные породы древесины, которые принято разделять на хвойные и лиственные. К хвойным относятся такие виды:
Сосна. Прочный и практичный материал для выполнения строительных работ. В нем собрано большое количество смолы, за счет чего он справляется с излишней влагой, при этом не поддается коррозии при сушке. Ель и пихта. Довольно прочные, но сучковатые материалы. Имеют приятый оттенок и незначительное количество смолы
При строительстве применяются как материал для элементов второстепенной важности. Кедр
Невзирая на то, что материал мягкий, он довольно прочный.
Лиственные породы делятся на мягкие и твердые. Это такие виды:
- Дуб. Высококачественный материал, обладающей высокой прочностью и надежностью. У дуба натуральный и приятный для глаза цвет. Как правило, он применяется для изготовления мебели, при возведении лестничного марша. Наиболее роскошно выглядит настоящий мореный дуб (выдержанный в воде около двух лет).
- Береза. Не столь прочный материал, зато однородный, за счет чего имеет максимально четко выраженную структуру. Из этого вида древесины получается качественная фанера, которая легко окрашивается и полируется.
- Осина. Слишком мягкий, но при этом практически не имеющий сучков вид древесины. Легко поддается обработке, но мелкие детали из осины делать не стоит.
- Липа. Широко применяется в производстве мебели. Прекрасно сохраняет свой первозданный вид даже после сушки. Липа устойчива к влаге.
- Клен. Довольно практичный материал, но весьма быстро рушится под воздействием влаги и вредителей. Неплохо красится, обрабатывается и проклеивается. Широко применяется как в строительстве, так и в изготовлении мебели.
- К лиственному типу также относится красное дерево. Красивый, дорогой и прочный материал. Чаще всего используется для элитного мебельного производства.
Достоинства материала
Строительство с использованием древесины имеет свои преимущества и недостатки. Главными плюсами при выборе такого материала будут:
- Экологичность. Самый весомый аргумент в пользу древесины — экологическая чистота. Некоторые современные материалы могут выделять пары тяжелых металлов и прочих химических элементов, что пагубно повлияет на здоровье жильцов дома.
- Ремонтопригодность. Части, сделанные из древесины, будет довольно легко отремонтировать в случае поломки или износа.
- Прочность и устойчивость ко многим внешним факторам, что делает долгим срок службы изделий из древесины. При правильной обработке этот материал будет безотказно служить долгие годы.
- Простота обработки.
- Плохая теплопроводность.
- Хорошие звукоизоляционные свойства.
Довольно обширный список. При этом маленькое число недостатков:
- Сильная зависимость свойств материала от того, в каких условиях росло дерево. Выбрать из-за этого качественный экземпляр бывает трудно.
- Изменения размеров из-за воздействия влажности и сухости. Но этот недостаток легко поправим обработкой.
- Легкая воспламеняемость.
Влияние теплопроводности
От коэффициента теплопроводности древесины напрямую зависит ее способность сохранять температуру в помещении. Лидирующую позицию по сбережению тепла занимает кедр. Немного отстают ель, лиственница и другие сосновые породы. Все зависит напрямую от размера бревна (его диаметра), влажности материала, подгонки и утепления стыков.
Строение из сосны толщиной всего в 10 см можно сравнить со стеной из кирпича шириной в 58 см или железобетонной — 113 см. Правильно возведенный из дерева дом будет довольно компактным и теплым. Поэтому при строительстве нужно учитывать таблицу теплопроводности дерева.
Максимально тяжелое хвойное дерево лиственница — победитель сосны по теплопроводности. Она имеет более низкий коэффициент.
Сосна — наиболее распространенное и часто применяемое для строительства дерево. Более того, с финансовой стороны вопроса это еще и максимально бюджетный вариант. Сосна легко поддается обработке, способна украсить дом или баню своим внешним видом.
kaminguru.com
Что такое теплопроводность?
процесс передачи тепловой энергии
В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.
Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.
Таблица теплопроводности утеплителей
В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.
Таблица теплопроводности утеплителей
Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.
Полезные показатели утеплителей
На какие основные показатели нужно обратить внимание при выборе утеплителя:
Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
Долговечность определяет срок службы материала;
Толщина материала определяет, сколько пространства будет занимать теплоизоляция
При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
Экологичность материала особенно важна при выполнении внутреннего утепления
Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.
Что влияет на теплопроводность
Из-за того, что в воздухе тепло передаётся только за счёт движущихся частиц, материалы, которые имеют пористую структуру, хуже отводят тепло. Передача энергии сильно зависит от количества, плотности, размера и формы пустых мест внутри сырья, из которого изготовлена конструкция (дом, печь или любая другая).
Также на энергетическую эффективность влияют отражающие свойства материала. Если покрытие имеет зеркальную поверхность, то оно будет получать меньше тепла от солнечных лучей и ламповых обогревателей.
Большую роль в передаче энергии по сырью играет влажность. Сырой воздух может увеличить скорость охлаждения, так как вода довольно сильно и быстро поглощает тепло, а влажные стены легче остывают.
Стены с плотно подогнанным утеплителем Источник www.rikkosteel.ro
Также на теплопроводность материала влияет его слоистость и волокнистость. Например, пол, который покрыт торцовой деревянной шашкой проводит большее количество энергии, чем щитовой или дощатый паркет. Это обусловлено тем, что у древесных изделий термическое сопротивление поперёк волокон в 2 раза выше, чем вдоль соединений. Таким особенностям подвергаются и искусственные материалы со слоистой структурой.
На теплопроводность влияет плотность соприкосновения одного материала к другому. Например, стена, к которой плотно прилегает железная поверхность будет остывать быстрее. Но это работает и в обратную сторону. Если между двумя деталями будет прослойка из воздуха или газа, то передача энергии уменьшится.
Это применяется при изготовлении окон из стекла или пластиковых аналогов. Также некоторые строители оставляют воздушную прослойку между двумя параллельными стенами или полом и фундаментом.
Стены с воздушной прослойкой Источник проекты-домов-ростов.рф
Понятие теплопроводности в физике
Перенос теплоты осуществляется 3 способами:
- Конвекция.
- Излучение.
- Теплопроводность.
Совершая непрерывные хаотические движения, молекулы, атомы, электроны и другие микрочастицы, из которых состоят тела, сталкиваются друг с другом. При этом частицы, обладающие большей энергией, частично передают ее частицам с меньшей энергией.
Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния.
По отдельности в реальном мире виды переноса теплоты практически не встречаются. Чаще всего происходит совместный перенос.
Условная схема теплообмена:
Характеристика теплозащитных свойств
Теплозащитные свойства стен напрямую зависят от теплопроводности материалов, которыми они были утеплены. Уровень теплопроводности равен объему тепла, проходящему за один час через один квадратный метр защитного материала толщиной в метр.
Самая низкая теплопроводность – у минеральной ваты, угольной ваты, пенополиуретана и других подобных материалов.
Но выбор утеплителя обуславливается и материалом возведения стен. Например, для деревянных домов подойдет минеральная или угольная вата. Обусловлено это тем, что они оказывают большое сопротивление холоду, но при этом позволяют дышать конструкции.
Для утепления кирпичных стен вполне подойдут пенопласт, пеноплекс, пенополиуретан и другие похожие по характеристикам утеплители.
Размеры листов
Весь применяемый в строительстве пеноплекс имеет стандартные габариты. Благодаря этому его очень удобно использовать для обшивки ограждающих конструкций и делать предварительные расчеты его необходимого количества.
Размеры пеноплекс 50 мм, поставляемый на современный рынок, в большинстве случаев имеет 60х120 мм. Именно такие листы наиболее распространены и востребованы у частных застройщиков.
Многие владельцы загородных домов, решившие утеплить их ограждающие конструкции, интересуются в том числе и тем, сколько пеноплекса 50-мм в штуках в упаковку кладут производители. В зависимости от разновидности такие плиты могут продаваться одновременно по 7-8 шт. Обшить с использованием материала из одной упаковки, таким образом, можно 4.85 или 5.55 квадратных метра утепляемых поверхностей.
Широко используются такие листы как в частном, так и промышленном строительстве. В последнем случае иногда могут применяться также плиты пеноплекса 50 мм размером 60х240 мм. Такими листами стены и фундаменты высотных домов, конечно же, обшивать удобнее.
Продается этот материал абсолютно во всех строительных супермаркетах. Стоит он относительно недорого. Цена за упаковку пеноплекса 50 мм равна порядка 1500 р.
Коэффициент теплопередачи
Коэффициент теплопередачи указывает значение теплового потока (в ваттах), который будет проходить через элементарную площадь 1 м2 данного материала при перепаде температур в 1 К. Таким образом, коэффициент теплопередачи имеет размерность [Вт/(м2хК)] (Ватт на квадратный метр и градус Кельвина). Чем лучше теплоизоляция, тем меньше значение коэффициента теплопередачи U и, соответственно, тем меньше будут тепловые потери конструктивного элемента здания. Коэффициент теплопроводности X характеризует способность конкретного материала пропускать тепло. Этот коэффициент имеет следующую размерность: [Вт/(мхК)]. Таким образом, чем меньше значение X, тем лучше подходит конкретный строительный материал в качестве теплоизолятора. Многие распространенные теплоизоляционные материалы, например, минеральное волокно или волокнистая целлюлоза, имеют значение X, равное 0,040 Вт/мхК и потому принадлежат к материалам группы теплопроводности 040. По аналогии с этим определением, материалы, коэффициент теплопроводности которых составляет X = 0,030 Вт/мхК (например, различные виды вспененного полиуретана), относятся к группе теплопроводности 030. Коэффициент теплопередачи двухслойного конструктивного элемента здания (например, стены) вычисляется по следующей формуле через теплопроводность и толщину соответствующего элемента или, соответственно, слоя конкретного материала.
Эмпирическое правило Значение коэффициента теплопередачи U, составляющее 1 Вт/(м2хК), соответствует передаче примерно 60 кВтч/(м2хгод) при температуре в помещении 20 °С и наружных температурах, соответствующих климату Германии.
Если потребление тепловой энергии составляет, например, 55 кВтч/(м2хгод) плюс 12,5 кВтч/(м2хгод) на горячее водоснабжение, то требования стандарта Effizienzhaus 70 по потреблению первичной энергии могут быть удовлетворены только в случае, если в дополнение к ископаемому топливу будет использоваться энергия из возобновляемых источников (например, солнечная энергия, биотопливо и т. п.). Только за счет потребления дополнительной энергии из возобновляемых источников с коэффициентом использования первичной энергии (Primarenergiefaktor) от 0,0 (солнечная энергия) или 0,2 (древесное топливо) можно добиться стопроцентного удовлетворения потребностей в тепловой энергии, используя при этом только 70% традиционного топлива. Традиционные отопительные системы, использующие отопительные котлы, работающие на жидком или газообразном котельном топливе (получаемом из нефти и природного газа), всегда требуют большего объема первичной энергии, чем вы потребляете на свои нужды. Поэтому так называемый коэффициент затрат производства еg, имеет значение, превышающее 1 (с учетом коэффициента производительности котла). Значения коэффициента затрат установки еА (с учетом кпд всей системы отопления, включая коэффициент затрат первичной энергии fp) тоже заметно превышают 1,0 (фактически — от 1,3 до 1,8). Однако спросом пользуются отопительные системы с как можно более низким коэффициентом затрат установки; наиболее выгодными и предпочтительными считаются такие, для которых коэффициент ер приближается к 1. Такие отопительные системы покрывают потребности в тепловой энергии за счет использования возобновляемых источников энергии (например, солнечная энергия, гранулированное древесное топливо) или же производят за счет сжигания топлива из нефти и газа гораздо больше тепловой энергии, нежели требуется вам. Теплоизоляция старых зданий
Коэффициенты теплоотдачи материалов
Коэффициент теплопередачи является количественной расчет ной величиной и зависит от коэффициентов теплоотдачи, термического сопротивления стенки и загрязнений. Для плоской стенки
, (9.28)
где
– коэффициент теплоотдачи от горячего теплоносителя, Вт/(м град); – толщина теплопередающей стенки аппарата, м; — коэффициент теплопроводности материала стенки, Вт/(м град); — коэффициент теплоотдачи от стенки к холодному теплоносителю, Вт/(м град); – термическое сопротивление загрязнения стенки, м 2 град/Вт.
Ориентировочные значения R приведены в . Если в трубах отношение наружного диаметра к внутреннему
, то для вычисления К можно пользоваться формулой (9.28).
Если теплопроводность слоя загрязнения неизвестна, подсчитывают К для чистой стенки, а влияние загрязнения стенки учитывают при помощи коэффициента использования поверхности теплообмена j
, (9.29)
Для большинства аппаратов j = 0,65 — 0,85. Если из рабочих сред, участвующих в теплообмене, активно выпадают осадки, то j = 0,4 — 0,5.
Коэффициенты теплоотдачи a определяются в основном из формул
или или (9.30)
где Nu – безразмерный критерий подобия Нуссельта; l – коэффициент теплопроводности теплоносителя (для которого определяется коэффициент теплоотдачи), Вт/(м град); l – определяющий геометрический размер, м;
– эквивалентный диаметр, м.(9.31)
где F – площадь поперечного сечения потока, м 2 ; П – смоченный периметр, м.
Критерий Нуссельта в зависимости от состояния и характера движения сред определяется по различным критериальным уравнениям.
Для подсчета a 1 и a 2 критериальное уравнение выбирается по справочникам так, чтобы оно возможно точно совпадало с условиями расчета.
Для устойчивого турбулентного режима движения жидкостей внутри труб (Re > 10000) рекомендуется следующее критериальное уравнение:
, (9.32)
где
– критерий Рейнольдса; – критерий Прандтля; — средняя скорость теплоносителя, м/с; l – определяющий геометрический размер, м; r – плотность теплоносителя, кг/м; m – вязкость теплоносителя, Н с/м 2 ; – массовая скорость теплоносителя, кг/(м2 с); – эквивалентный диаметр, м; c – удельная теплоемкость теплоносителя, Дж/(кг град); l – теплопроводность теплоносителя, Вт/(м град).
Здесь за определяющую температуру принята
, а за определяющий размер эквивалентный диаметр . Уравнение (8.32) применяется при , 100 > Pr > 0,6; для труб – при условии, где l – длина трубы, м; d – диаметр трубы, м.
Если движение в трубе (канале) носит характер переходного режима, т.е. Re = 2300 — 10000, то критерий Нуссельта
, (9.33)
Для ламинарного движения ( Re 2 ; r – плотность теплоносителя, кг/м ; b – коэффициент объемного расширения теплоносителя, град –1 ;
– частный температурный напор, град.
Если теплоноситель перемещается в межтрубном пространстве (при наличии перегородок), то критерий Нуссельта определяется по уравнению
, (9.35)
Что такое теплопроводность
В теории теплопроводность – это способность материала проводить энергию или тепло от более нагретых частей к менее тёплым, путём хаотического движения частиц тела. На практике это минимизация тепловых потерь через строительные конструкции. У разных материалов своя теплопроводность. Дерево менее податливо к таким действиям, а металл наоборот нагревается до такой степени¸ что его тяжело держать в руках.
Для характеристики проводника тепла придумали такую единицу, как коэффициент. Обозначают её греческой буквой λ и измеряют в Вт/(м*℃). Иногда вместо градусов Цельсия в этой формуле указаны градусы Кельвина (К), но суть от этого не меняется. Этот коэффициент показывает способность передачи тепла материалом на определённое расстояние за единицу времени. Но показатель характеризует само вещество, не привязываясь к размерам изделия.
КТП некоторых материаловИсточник pobetony.expert
При покупке стройматериала у продавца можно попросить паспорт на продукт и посмотреть коэффициент теплопроводности. Сырье, отличающееся высокой проводимостью тепла, используют в качестве радиаторов, так как их стенки будут передавать нагрев от теплоносителя.
Чем меньше коэффициент теплопроводности материала для стены здания, тем меньше оно будет терять тепла во время холодной погоды. И тем меньше можно делать толщину стены. В справочниках чаще всего указывают несколько значений теплопроводности для материала (от трёх и больше). Это происходит из-за того, что сам коэффициент меняется в зависимости от температуры и других факторов, например, влаги, при которой значение увеличивается.
Вспененная древесинаИсточник inpromen.ru
Зачем нужна теплоизоляция?
Актуальность теплоизоляции заключается в следующем:
Сохранение тепла в зимний период и прохлады в летний период.
Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.
Увеличение долговечности конструкций здания.
В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.
Шумоизоляция.
Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).
Увеличение полезной площади зданий.
Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.
Расчет теплопроводности стен из пеноблоков
Расчет теплопроводности стен из пеноблоков
Программы для теплотехнического расчёта:Teplotech2 (.xls файл)Teplotech3 (.exe файл)Teplotech4 (.exe файл)
Теплоизоляция (сопротивление теплопередаче) стен из пеноблокови варианты их строительства.
Пенобетон, как строительный материал, стал востребован в России после вступления в силу СНИП 2-3-79. В нем были определены новые нормы по теплоизоляции стен, по которым, например, минимальная толщина кирпичной стены должна быть около 2 метров. Естественно, что строить дома с такими стенами экономически невыгодно и строители стали искать материал на замену кирпичу. Этот материал должен был обеспечивать хорошую теплоизоляцию, быть экологически чистым и долговечным. Всем этим требованиям отвечает пенобетон, и по этой причине спрос на этот материал в настоящее время непрерывно растет. Итак, в данной статье мы рассчитаем необходимую толщину наружной стены, при её строительстве одним из 2-х наиболее популярных вариантов: кирпич-пенобетон или оштукатуренный пенобетон. Пенобетон в стене может быть различной плотности, мы рассчитаем варианты стены для плотностей 600, 800 и 1000кг\куб.м. Также, на основе примера расчета необходимой толщины стены в данной статье, Вы сможете, в будущем, рассчитывать толщину любой стены, из любых, материалов самостоятельно.Что нужно знать для расчета:1. Теплотехнические характеристики всех материалов, из которых будет состоять стенаУ каждого строительного материала есть теплотехнические характеристики. Это теплопроводность или сопротивление теплопередаче (величина обратная теплопроводности). Эти коэффициенты, необходимые для расчета теплопотерь, показывают какая мощность теряется каждым квадратным метром наружной поверхности конструкции при ее толщине в 1м и разницей температур между наружной и внутренней поверхностью в 1 градус (kt=ватт/(m*t)). Данные для многих материалов приведены в СНИП 2-3-79.2. ГСОП (Градусо-сутки отопительного периода, град.С в сут.)Данный показатель можно рассчитать по формуле из СНИП 2-3-79, а можно просто взять из справочника. Например, для Москвы и Санкт-Петербурга он менее 6000.3. Сопротивление стены теплопередачеОно зависит от ГСОП и берется из СНИП. В нашем случае, при ГСОП 6000, сопротивление теплопередаче у стены должно быть не менее 3,5 (град.С*кв.м./Вт).
Итак, наша стена должна иметь суммарное сопротивление теплопередаче не менее 3,5 (град.С*кв.м./Вт), т.к. каждый слой имеет свое сопротивление теплопередаче, то сопротивление всей стены, согласно СНИП 2-3-79, измеряется как сумма сопротивлений слоев. Также нам понадобится коэффициент теплопроводности Вт/(м*град.С) всех материалов используемых для стены:1.кирпич лицевой М-150 – 0,562.пенобетон плотность 600 – 0,143.пенобетон плотность 800 – 0,214.пенобетон плотность 1000 – 0,295.штукатурка – 0,58
Ниже следует расчет пенобетонного слоя для 2-х вариантов стен: 1-й вариант стены: облицовочный кирпич (250х120х65) + пеноблок (х мм)+ штукатурка (20мм)Рассчитаем какая толщина пенобетона нужна.Толщина кирпича в стене, при обычной укладке, 120мм. Разделим толщину в метрах на теплопроводность 012/0,56 и получим сопротивление теплопередаче кирпичного слоя 0,21. Толщина штукатурки 20мм, следовательно её сопротивление теплопередаче равно 0,02/0,58=0,03.Рассчитаем толщину пенобетонного слоя:
Плотность пенобетона | Формула | Результат — требуемая толщина слоя |
600 | х=(3,5-0,21-0,03)*0,14 | 450мм |
800 | х=(3,5-0,21-0,03)*0,21 | 680мм |
1000 | х=(3,5-0,21-0,03)*0,29 | 940мм |
2-й вариант стены: штукатурка (20мм)+ пенобетон (х мм)+ штукатурка(20мм)Толщина штукатурки (суммарная) 40мм, следовательно её сопротивление теплопередаче 0,06. Соответственно толщина пенобетонного слоя должна быть:
Плотность пенобетона | Формула | Результат — требуемая толщина слоя |
600 | х=(3,5-0,06)*0,14 | 480мм |
800 | х=(3,5-0,06)*0,21 | 720мм |
1000 | х=(3,5-0,06)*0,29 | 1000мм |
Мы рассчитали необходимую толщину стены для соответствия теплопроводности по СНИП 2-3-79, учитывая различные варианты укладки стен. Если вам что-то непонятно или у вас возникли вопросы — пишите на форум.