Тепловой насос френетта: устройство и принцип работы + можно ли собрать самому?

Особенности и принцип работы ТН

Чем тепловой насос отличается от других установок для отопления частных домов:

  • в отличие от котлов и обогревателей, агрегат самостоятельно не производит тепло, а подобно кондиционеру перемещает его внутрь здания;
  • ТН получил название насоса, поскольку «выкачивает» энергию из источников низкопотенциального тепла – окружающего воздуха, воды либо грунта;
  • установка питается исключительно электроэнергией, потребляемой компрессором, вентиляторами, циркуляционными насосами и платой управления;
  • работа аппарата основана на цикле Карно, используемом во всех холодильных машинах, например, кондиционерах и сплит-системах.

В режиме обогрева традиционная сплит-система нормально работает при температуре выше минус 5 градусов, на сильном морозе эффективность резко падает

В теплообменном цикле Карно участвует рабочее тело – газ фреон, кипящий при минусовой температуре. Поочередно испаряясь и конденсируясь в двух теплообменниках, хладагент поглощает энергию окружающей среды и переносит внутрь здания. В целом принцип действия теплового насоса повторяет работу кондиционера, включенного на обогрев:

  1. Находясь в жидкой фазе, фреон двигается по трубкам наружного теплообменника-испарителя, как изображено на схеме. Получая тепло воздуха или воды сквозь металлические стенки, хладагент нагревается, кипит и испаряется.
  2. Дальше газ поступает в компрессор, нагнетающий давление до расчетного значения. Его задача – поднять точку кипения вещества, чтобы фреон сконденсировался при более высокой температуре.
  3. Проходя через внутренний теплообменник–конденсор, газ снова обращается в жидкость и отдает накопленную энергию теплоносителю (воде) или воздуху помещения напрямую.
  4. На последнем этапе жидкий хладон поступает внутрь ресивера–влагоотделителя, затем в дросселирующее устройство. Давление вещества снова падает, фреон готов пройти повторный цикл.

Схема работы теплового насоса похожа на принцип действия сплит-системы

В бытовых кондиционерах и ТН применяются различные типы терморегулирующей арматуры, снижающей давление хладагента перед испарителем. В бытовых сплит-системах роль регулятора играет простое капиллярное устройство, в насосах ставится дорогой терморегулирующий вентиль (ТРВ).

Заметьте, вышеописанный цикл происходит в тепловых насосах всех типов. Разница состоит в способах подвода/отбора тепла, которые мы перечислим далее.

Виды дроссельной арматуры: капиллярная трубка (фото слева) и терморегулирующий вентиль (ТРВ)

Делаем тепловой насос своими силами

В общих чертах инструкция по изготовлению тепловых насосов для отопления своими руками имеет следующий вид:

  • приобретается компрессор;
  • изготавливаются конденсатор и испаритель;
  • устанавливается регулирующий клапан и производится заправка ТН фреоном.

Приобретение компрессора (можно б/у)

Компрессор следует выбирать спиральный, а не поршневой компрессор, так как он имеет более высокий КПД и отличается большей долговечностью.

Шумит он тоже меньше, что немаловажно, ведь агрегат будет находиться внутри дома. В самодельном ТН вместо одного мощного компрессора можно установить несколько маломощных, которые будут включаться в работу один за другим

В самодельном ТН вместо одного мощного компрессора можно установить несколько маломощных, которые будут включаться в работу один за другим.

Преимущество такого варианта – снижение величины пусковых токов в сравнении со схемой, включающей один компрессор. «Сердце» ТН следует закрепить на стене с помощью кронштейнов. Изготовление конденсатора

Конденсатор изготавливается в виде змеевика из медной трубы. Ее диаметр и длина подбираются таким образом,чтобы площадь поверхности соответствовала значению:

S = P / 0.8 x dT

Здесь:

  • S, кв. м – площадь поверхности конденсатора (медного змеевика);
  • P, кВт – мощность по тепловыделению;
  • 0,8 – стандартный коэффициент теплопроводности для меди;
  • dT, градусы – разность температур теплоносителя отопительной системы на входе и выходе в теплообменник.

Для придания змеевику правильной формы медную трубу можно оборачивать вокруг газового баллона. Ее стенка должна быть не тоньше 1-го мм, иначе при сгибании она будет заминаться.

Конденсатор располагают так, чтобы фреон поступал в него сверху.

Испаритель рассчитывают и изготавливают совершенно аналогично. Фреон в него должен поступать снизу.

Наиболее эффективными являются покупные пластинчатые теплообменники, но стоят они довольно дорого: около 400 евро. Предлагается установить испаритель и конденсатор в обычных баках, каждый из которых подключен к соответствующему контуру. Емкость бака для конденсатора составляет примерно 120 л, для испарителя понадобится меньший объем – около 70 л. Правда, змеевик испарителя может оказаться слишком большим, в этом случае для него также можно взять бак объемом 120 л.

Все привылки, что электрическое отопление стоит очень дешево, поэтому оно не пользуется большой популярностью. На самом деле отопление дома электричеством дешево можно организовать при помощи многотарифных счетчиков и накопительных емкостей. Как это делается, читайте на нашем сайте.

Подробную систему расчета мощности котла отопления вы найдете в этой теме.

Завершающий этап

Завершающий этап – монтаж терморегулирующего клапана и заправка ТН фреоном R22 или R422. Для этих операций придется приглашать специалиста с соответствующим оборудованием.

Схема устройства самодельного теплового насоса

Обогрев дома тепловым насосом типа «земля-вода»

В тепловом насосе типа «земля-вода» теплообменник может быть представлен двумя видами:

  • горизонтальным коллектором. Это несколько контуров, выполненных из пластиковых труб, которые находятся под слоем почвы, причем следует заметить, что теплообмен более интенсивен во влажных грунтах, а в сухих песчаных снижается. Тепло, которое накапливается в ней (в почве) в процессе солнечного излучения, коллектор отбирает и использует. Чтобы отопление таким геотермальным тепловым насосом было эффективным, в зависимости от характера почвы, ее теплопроводности, геометрии местности необходимо подбирать соответствующую схему укладки труб, например, в виде петли, змейки, зигзага и т. д. Для обогрева дома площадью 150–200 м потребуется трубопровод длиной примерно 400–650 м, уложенный в виде нескольких контуров на глубину 1,2–1,5 м, т. е. ниже уровня промерзания. Для этого понадобится участок площадью приблизительно 300–400 м (чтобы сократить длину трубопровода, снизить гидравлическое давление и уменьшить мощность насоса, прибегают к спиральной укладке труб на глубину 2–4 м), т. е. фактически его площадь должна вд
    вое превосходить площадь отапливаемой постройки. Понятно, что на таком участке можно лишь разбить газон или цветник, не используя его под другие нужды. Устройство горизонтального коллектора обойдется несколько дешевле, да и монтаж его отличается большей простотой, чем закладка теплообменника другого вида;
  • вертикальным грунтовым зондом, для которого необходимо пробурить скважину глубиной от 50 до 200 м. Естественно, что для такого оборудования не понадобится большой участок, но бурильные работы стоят достаточно дорого. Однако и эффективность такого геотермального теплового насоса для дома будет гораздо выше (по сравнению с горизонтальным коллектором разница составит примерно 20 %), поскольку на большой глубине температура почвы тоже более высокая. Зонды могут иметь разную конструкцию, но, как правило, предпочтение отдают U-образной. Зазор между стенками скважины и зондом заполняют раствором – либо буровым, либо бетонным, что не только предохраняет трубы от механических повреждений, но и улучшает теплопередачу.

Схема отопления тепловым насосом «земля-вода»:

  • первый контур с рассолом;
  • второй контур – собственно тепловой насос:
  1. испаритель;
  2. компрессор;
  3. конденсатор;
  4. расширительный клапан;

третий контур – отопительная система.

Чтобы обогреть дом площадью 150–200 м, надо пробурить 5–6 пятидесятиметровых скважин, причем при этом надо соблюдать несколько условий. Во-первых, скважины должны располагаться на расстоянии от дома не менее чем 2 м, иначе его фундамент может пострадать; во-вторых, скважины не должны попасть на одну линию с подземными водами, вследствие чего эффективность теплового насоса резко упадет.

Ниже описано, как работает тепловой насос типа «вода-вода» для отопления загородного дома.

Что такое тепловой насос

Рассматриваем принцип работы и виды необычного устройства для экономичного отопления коттеджа – теплового насоса.

Тепловой насос – устройство, которое использует тепло окружающей природы – воздуха, воды, грунта для отопления коттеджа и нагрева горячей воды. Сердце теплового насоса – фреоновый контур, включающий компрессор, расширительный клапан, два теплообменника и медный трубопровод.

Посмотрите товары для изобретателей. Ссылка на магазин.

Принцип работы теплового насоса – перекачивание тепла из одной среды (воздух, вода, грунт) в другую – в систему отопления.

Казалось бы, тепловой насос – сложное и непонятное устройство, одна абсолютное большинство из нас используют тепловой насос ежедневно. Дело в том, что холодильник – тоже тепловой насос: он также имеет фреоновый контур и компрессор, он также перекачивает тепло – охлаждая продукты и грея импровизированную “систему отопления” – решетку на задней стенке. Да и выглядит похоже.

Принцип работы теплового насоса. Тепловой насос отбирает низкопотенциальное тепло у воздуха (-25…+35 градусов), у воды (+2…+7 градусов), у грунта (-5…+5 градусов), охлаждая эту среду на несколько градусов. Фреон во внутреннем контуре теплового насоса закипает и превращается в газ, компрессор сжимает газ, у которого резко уменьшается объем, но увеличивается давление и температура, далее разогретый фреон передает тепло через теплообменник в систему отопления. Далее цикл повторяется.

Электроника для самоделок в китайском магазине.

Схема работы теплового насоса

Важно отметить, что тепловой насос потребляет электроэнергию только на перекачку тепла (циркуляционные насосы) и привод компрессора – а прямого нагрева теплоносителя не происходит. За счет этого на 1 кВт потребленной электроэнергии можно получить от 3 до 5 кВт тепловой энергии! Законы сохранения энергии не нарушаются – они применимы только для замкнутой системы, а у нас их здесь три – контур источника тепла, фреоновый контур, контур системы отопления

Виды тепловых насосов и их краткое сравнение. Важнейшая классификация тепловых насосов – по источнику низкопотенциальной энергии, у которого они отбирают тепло, повышают его температуру и передают в систему отопления.

Воздушные тепловые насосы – первые в списке. Они охлаждают уличный воздух, получая таким образом низкопотенциальное тепло. Данные тепловые насосы довольно просты в установке – не требуется проводить земляные работы, но у них есть недостаток: их эффективность и тепловая мощность зависит от температуры уличного воздуха. Чем холоднее на улице, тем хуже они работают. К сожалению, без резервного котла в средних и северных широтах России они не могут являться полноценным теплогенератором.

Принцип работы водяного теплового насоса

Грунтовый тепловой насос отбирает тепло у почвы. Этот тип тепловых насосов также способе круглый год отапливать дом (и быть единственным котлом в коттедже – тоже), и имеет довольно высокую эффективность. Система отбора низкопотенциаьного тепла здесь следующая: либо бурятся скважины, в которые опускаются геотермальные зонды (по которым по замкнутому контуру циркулирует теплоноситель, нагреваясь от грунта через стенки трубы), либо такой же контур раскладывается в горизонтальной плоскости (почти как теплый пол) в грунте. У каждого есть свои плюсы и минусы.

Грунтовой тепловой насос с горизонтальным коллектором

Грунтовой тепловой насос с вертикальными скважинами

В целом, при правильном подходе, тепловой насос – удобный агрегат для отопления коттеджа, а в некоторых случаях он быстро окупается, несмотря на высокую первоначальную стоимость.

Пример котельной с тепловым насосом DANFOSS для отопления и нагрева горячей воды

Процесс сборки теплового насоса «Френетта» своими руками: чертежи

Сначала в корпусе для труб отопления проделываются два отверстия специально для труб отопления. Стержень с резьбой устанавливается по центру корпуса. На эту резьбу навинчивайте гайку, ставьте диск, потом навинчивайте следующую гайку и пр. И так монтаж дисков продолжается до полного заполнения корпуса.

Потом в систему заливается масло, к примеру, хлопковое. Корпус закрывается и фиксируется на стержень. К проделанным отверстиям подводите трубы радиатора. Электродвигатель присоединяете к центральному стержню, он гарантирует вращение. Прибор можно включить в сеть и проверить его работу.

Самостоятельное изготовление устройства

Обзор вариантов устройства насоса Френетта позволяет понять, что принципы его работы с той или иной долей эффективности могут быть использованы в конструкциях различного типа и вида. Основная идея остается прежней: узкое пространство между элементами из металла, заполненное маслом, и вращение с помощью электродвигателя.


На схеме представлен вариант теплового насоса Френетта, который обычно используется для самостоятельного изготовления устройства. Основа конструкции – металлические диски, разделенные гайками (+)

Чтобы изготовить такое устройство надо подготовить необходимые материалы:

  • полый цилиндр из металла;
  • набор одинаковых стальных дисков с отверстием по центру;
  • набор гаек высотой 6 мм;
  • стальной стержень с резьбой:
  • электродвигатель с удлиненным валом;
  • подшипник;
  • радиатор отопления;
  • соединительные трубы.

Размеры насоса могут быть больше или меньше. Но расстояние между дисками следует выдержать точно – 6 мм. В качестве разделителей используются стандартные гайки, а стальной стержень является центром конструкции.

Его толщина должна соответствовать диаметру гайки. Если стержня с резьбой под рукой не оказалось, ее придется просто нарезать.


Металлические диски для теплового насоса Френетта должны быть чуть меньше диаметра цилиндрического корпуса, чтобы обеспечить свободное вращение и борлее эффективный нагрев теплоносителя

Очевидно, что и отверстие в дисках должно быть таким, чтобы их можно было свободно надеть на осевой стержень. Наружный диаметр дисков должен быть меньше корпуса на несколько миллиметров. Если готовых элементов под рукой не оказалось, диски вырезают самостоятельно из листового металла или поручают эту работу токарю.


Стальные диски для теплового насоса Френетта можно вырезать в домашних условиях, если в наличии имеется подходящее оборудование

Цилиндрический корпус можно сделать из старой металлической емкости подходящей конфигурации или же сварить из металла. Подойдет и обрезок широкой металлической трубы.

К торцам цилиндра приваривают стенки. Корпус должен быть герметичным, чтобы масло не протекало. В верхнем и нижнем торце корпуса следует сделать дополнительные отверстия: для входа и выхода труб отопления, ведущих к радиатору.

Разумеется, все места соединения труб следует загерметизировать. Для резьбовых соединений используют специальные уплотнители: ФУМ-ленту, лен и т.п. Если решено использовать полипропиленовые трубы, понадобятся специальные фитинги и, возможно, паяльник для монтажа таких труб.

Для работы насоса Френетта высокопроизводительный электродвигатель не нужен. Подойдет устройство, снятое со старой или сломанной бытовой техники, например, с обычного вентилятора.

Чтобы стержень вращался свободно, нужен подходящий подшипник стандартных размеров. Когда все элементы подготовлены, можно начинать сборку устройства. Сначала на нижнюю часть внутри корпуса устанавливают центральную ось с подшипником. Затем на ось навинчивают разделительную гайку, затем надевают диск, снова – гайку, снова – диск и т.д.

Диски с гайками чередуют до тех пор, пока корпус не будет заполнен доверху. Еще на этапе подготовки можно сделать предварительные расчеты по количеству необходимых дисков и гаек.

Нужно к толщине гайки (6 мм) прибавить толщину диска. Высоту корпуса разделить на эту цифру. Полученное число даст сведения о нужном количестве пар “гайка+диск”. Последней устанавливают гайку.

После того, как корпус заполнен этими подвижными элементами, его заполняют жидким маслом. Тип масла значения не имеет, можно взять минеральное, хлопковое, рапсовое или любое другое масло, которое хорошо переносит нагрев и не застывает. После этого конструкцию накрывают верхней крышкой и аккуратно ее заваривают.

К этому моменту трубы радиатора уже обычно присоединены к крышкам. Для удобства во время дальнейшего монтажа и обслуживания устройства на трубах можно поставить два запорных крана. Теперь к валу двигателя нужно присоединить ось теплового насоса.

Систему включают в сеть, проверяют наличие протечек, оценивают характеристики работы устройства.


Изготовленный своими руками тепловой насос Френетта можно подключить к обычному чугунному или биметаллическому радиатору, который обеспечит необходимый отопительный эффект

Если все сделано правильно, ось с дисками начнет раскручиваться, разогревая находящееся внутри устройства масло. Горячий теплоноситель станет перемещаться через верхнее отверстие по трубе в радиатор отопления. Остывшее масло будет возвращаться в корпус теплового насоса по нижней трубе для повторного нагрева.

Варианты конструкции насоса Френетта

Евгений Френетт не только изобрел устройство, названное его именем, но и неоднократно его усовершенствовал, придумывая все новые, более эффективные варианты прибора. В самом первом насосе, который изобретатель запатентовал в 1977 году, были использованы только два цилиндра: наружный и внутренний. Полый наружный цилиндр был больше диаметром и находился в статичном состоянии. Диаметр внутреннего цилиндра при этом был немного меньше, чем размеры полости наружного цилиндра.

Это схема самого первого варианта теплового насоса Френетта. Вращающийся вал расположен горизонтально, теплоноситель помещен в узкое пространство между двумя рабочими цилиндрами

В получившееся узкое пространство между стенками двух цилиндров изобретатель залил жидкое масло. Разумеется, та часть конструкции, в которой находился этот жидкий теплоноситель, была тщательно заделана, чтобы не допустить протечек масла.

Внутренний цилиндр соединяют с валом электродвигателя таким образом, чтобы обеспечить его быстрое вращение относительно неподвижного большого цилиндра. На противоположном торце конструкции был помещен вентилятор с крыльчаткой. Во время работы масло разогревалось и передавало тепло воздуху, окружающему устройство. Вентилятор позволял быстро распространить теплый воздух по всему объему помещения.

Поскольку нагревалась эта конструкция довольно, ради удобного и безопасного использования конструкция была спрятана в защитный корпус. Разумеется, в корпусе были сделаны отверстия для циркуляции воздуха. Полезным дополнением к конструкции стал термостат, с помощью которого работу насоса Френетта можно было автоматизировать до некоторой степени.

Центральная ось в такой модели теплового насоса расположена вертикально. Двигатель находится внизу, затем установлены вложенные друг в друга цилиндры, а сверху находится вентилятор. Позднее появилась модель с горизонтальным расположением центральной оси.

Модель теплового насоса Френетта с горизонтально ориентированным вращающимся валом была использована вместе с радиатором отопления, внутри которого циркулировало нагретое масло

Именно такое устройство впервые было использовано в сочетании не с вентилятором, а с радиатором отопления. Двигатель помещен сбоку, а вал ротора проходит через вращающийся барабан и выходит наружу. В устройстве этого типа вентилятор отсутствует. Теплоноситель из насоса по трубам перемещается в радиатор. Подобным же образом нагретое масло можно вывести и на другой теплообменник или же прямо в трубы отопления.

Позднее конструкция теплового насоса френетта была существенно изменена. Вал ротора по-прежнему остался в горизонтальном положении, а вот внутренняя часть была сделана из двух вращающихся барабанов и помещенной между ними крыльчатки. В качестве теплоносителя здесь снова используется жидкое масло.

В этом варианте теплового насоса Френетта два цилидра вращаются рядом, они разделены крыльчаткой особой конструкции из очень прочного металла

При вращении этой конструкции масло дополнительно нагревается, поскольку проходит через специальные отверстия, сделанные в крыльчатке, а затем проникает в узкую полость между стенками корпуса насоса и его ротором. Таким образом, эффективность насоса Френетта была существенно повышена.

По краям крыльчатки для теплового насоса Френетта сделаны небольшие отверстия. Теплоноситель быстро и эффективно нагревается, проходя через них

Однако стоит отметить, что для изготовления в домашних условиях этот тип насоса не слишком подходит. Для начала понадобится найти достоверные чертежи или рассчитать конструкцию самостоятельно, а это под силу только опытному инженеру. Затем понадобится найти особую крыльчатку с отверстиями подходящего размера. Этот элемент теплового насоса работает при повышенных нагрузках, поэтому он должен быть выполнен из очень прочных материалов.

Выводы и полезное видео по теме

Интересный вариант насоса Френетта представлен в этом видеоматериале:

К сожалению, насос Френетта не нашел широкого признания в сфере отопления. Такое устройство промышленного изготовления для бытовых нужд сложно найти в магазинах техники для дома. Но немало народных умельцев успешно использовали наработки этого ученого и применили их в своих жилищах, банях, гаражах и т.п.

Возможно именно вы являетесь тем самым самоделкиным, которому удалось воплотить идею Френетта? Пожалуйста, поделитесь своим опытом – оставляете комментарии к статье и добавляете фото своих изделий. Форма для связи расположена ниже.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Наш Бастион
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Как изготовить вихревой тепловой генератор потапова своими руками

Простейший тепловой насос из оконного кондиционера

Как нетрудно догадаться, для изготовления ТН «вода – воздух» потребуется оконный охладитель в рабочем состоянии. Очень желательно купить модель, оборудованную реверсивным клапаном и способную работать на обогрев, иначе придется переделывать фреоновый контур.

Отопительная мощность аппарата больше холодильной и равна сумме двух параметров — производительность плюс тепло, выделяемое компрессором

При некоторой доле везения вам даже не придется выпускать фреон и перепаивать трубки. Как переделать кондиционер в тепловой насос:

  1. Снимите верхний кожух агрегата и открутите внешний теплообменник от поддона. Аккуратно отодвиньте радиатор, стараясь не перегибать трубки с хладагентом.
  2. Снимите наружную крыльчатку с общего вала.
  3. Изготовьте металлический бак по длине внешнего теплообменника, ширину сделайте на 10—15 см больше. В боковые стенки врежьте штуцеры подачи проточной воды.
  4. Чтобы радиатор не обмерзал, увеличьте площадь обмена, добавив по бокам пластины из меди либо алюминия (в зависимости от материала теплообменника).
  5. Погрузите радиатор в бак, желательно без разрезания фреоновых трубок. Сделайте герметичную крышку и уплотните вводы контура.
  6. Подсоедините к штуцерам шланги подачи и отбора воды, подключите циркуляционные насосы. Наполните и проверьте бак на герметичность.

Теперь остается запустить самодельный ТН и отрегулировать водяной поток, добиваясь максимальной эффективности

Обратите внимание: импровизированный отопитель использует полностью заводскую «начинку», вы только переместили радиатор из воздушной среды в жидкую. Как система работает вживую, смотрите на видео мастера–умельца:

Разновидности теплового агрегата Френетта

В настоящее время тепловой насос Френетта представлен на рынке двадцатью различными конструкциями. Ротор вращается в масле, залитом в статор. Принцип работы взят за основу классификации существующих моделей. Согласно указанному критерию они делятся на следующие типы:

  • Абсорбционный. Требует для работы топливо, либо электрическую энергию;
  • Компрессионный. В основу работы положена энергия нашей планеты;
  • Воздушный. Тепло отбирается с использованием воздуха.

Такие изделия, как тепловой насос Френетта, принцип действия имеют единый, а по своему назначению подразделяется на две группы. Первыми обогревают малые помещения и дома. Они именуются частными. Вторые считаются промышленными и работают с использованием энергии фреона или атмосферного воздуха. Есть версии, функционирующие с использованием земли, либо воды.

Наибольшей популярностью у потребителей пользуются в настоящее время насосы следующих типов:

  1. Насосы промышленного типа (теплоноситель – вода). Внешне указанные изделия похожи на гриб. Самостоятельно изготовить подобную конструкцию практически невозможно.
  2. Насосы, обладающие большой эффективностью. Тепловой насос Френетта, схема данной версии конструктивно имеет крыльчатку и пару цилиндров, являющихся рабочими. Раскрученная жидкость под действием сил центробежного характера выбрасывается в стационарный внешний цилиндр. Указанное техническое решение даёт возможность повысить значение присущего изделиям КПД.
  3. Насосы горизонтальные. Имеют цилиндр статора, размещаемый параллельно поверхности грунта. Очень компактные изделия, упрощение которых достигнуто за счёт замены цилиндра – ротора на вал электродвигателя. Все элементы конструкции уплотнены стандартными манжетами и сальниками. Насосы указанных конструкций подогревают залитое масло, после чего подают теплоноситель в отопительные приборы (радиаторы).

Виды теплонасосов: нюансы работы теплообменника фреон-вода

Природный источник энергии может представлять собой систему скважинного типа, грунтового или водоемного. Каждый вариант уникальный. Отличается принцип работы и монтаж.

Когда источником энергии является скважина, необходимо пробурить соответствующее отверстие в земли. В 1 м источника можно добыть 50-60 Вт энергии. Для нормальной работы теплонасоса потребуется 20 м.

Особенности получения энергии со скважины:

  1. Главные плюсы – компактность и большая теплоотдача;
  2. Минус – сложности при бурении скважины.

Когда источником тепла выступает грунт, то труба залегает на глубину ниже уровня промерзания земли. Для укладки трубы можно вырыть котлован или траншею.

Если поблизости размещены водоемы, то можно положить трубу в источник воды. Главное требование – достаточная глубина. В 1 кв м воды можно получить 30 Вт энергии. Для фиксации труб на глубине к ним прикрепляется груз.

В некоторых случаях в качестве источника используют воздух. Такой насос содержит хладагент. В этом случае подходит фреон из холодильника. Вещество забирает тепло из воздуха и отдает помещению.

Особенности тепловых насосов

Для получения тепловой энергии в ТН не используются энергоносители, и поэтому не наносится вред окружающей природе. Такая установка производит тепловой энергии больше, чем потребляет электроэнергии.

Принцип работы

В основе работы ТН лежит принцип переноса тепла от более холодного источника к более теплому. То есть более холодное он делает еще холоднее, а более теплое — еще теплее. Это значит здесь не заложена идея вечного двигателя, потому что в сумме количество тепла сохраняется неизменным, а электроэнергия тратится только на разделение и перенос тепла.

Для чего нужны

Тепловой насос можно применить как для отопления, так и для охлаждения, потому что при помощи его происходит разделение и перенос тепла. Значит ту часть установки, которая становится холоднее, можно использовать для понижения температуры, а другую часть — для повышения.

Делаем тепловой насос своими силами

В общих чертах инструкция по изготовлению тепловых насосов для отопления своими руками имеет следующий вид:

  • приобретается компрессор;
  • изготавливаются конденсатор и испаритель;
  • устанавливается регулирующий клапан и производится заправка ТН фреоном.

Приобретение компрессора (можно б/у)

Компрессор следует выбирать спиральный, а не поршневой компрессор, так как он имеет более высокий КПД и отличается большей долговечностью.

Шумит он тоже меньше, что немаловажно, ведь агрегат будет находиться внутри дома. В самодельном ТН вместо одного мощного компрессора можно установить несколько маломощных, которые будут включаться в работу один за другим

В самодельном ТН вместо одного мощного компрессора можно установить несколько маломощных, которые будут включаться в работу один за другим.

Преимущество такого варианта – снижение величины пусковых токов в сравнении со схемой, включающей один компрессор. «Сердце» ТН следует закрепить на стене с помощью кронштейнов. Изготовление конденсатора

Конденсатор изготавливается в виде змеевика из медной трубы. Ее диаметр и длина подбираются таким образом,чтобы площадь поверхности соответствовала значению:

S = P / 0.8 x dT

Здесь:

  • S, кв. м – площадь поверхности конденсатора (медного змеевика);
  • P, кВт – мощность по тепловыделению;
  • 0,8 – стандартный коэффициент теплопроводности для меди;
  • dT, градусы – разность температур теплоносителя отопительной системы на входе и выходе в теплообменник.

Для придания змеевику правильной формы медную трубу можно оборачивать вокруг газового баллона. Ее стенка должна быть не тоньше 1-го мм, иначе при сгибании она будет заминаться.

Конденсатор располагают так, чтобы фреон поступал в него сверху.

Испаритель рассчитывают и изготавливают совершенно аналогично. Фреон в него должен поступать снизу.

Наиболее эффективными являются покупные пластинчатые теплообменники, но стоят они довольно дорого: около 400 евро. Предлагается установить испаритель и конденсатор в обычных баках, каждый из которых подключен к соответствующему контуру. Емкость бака для конденсатора составляет примерно 120 л, для испарителя понадобится меньший объем – около 70 л. Правда, змеевик испарителя может оказаться слишком большим, в этом случае для него также можно взять бак объемом 120 л.

Все привылки, что электрическое отопление стоит очень дешево, поэтому оно не пользуется большой популярностью. На самом деле отопление дома электричеством дешево можно организовать при помощи многотарифных счетчиков и накопительных емкостей. Как это делается, читайте на нашем сайте.

Подробную систему расчета мощности котла отопления вы найдете в этой теме.

Завершающий этап

Завершающий этап – монтаж терморегулирующего клапана и заправка ТН фреоном R22 или R422. Для этих операций придется приглашать специалиста с соответствующим оборудованием.

Схема устройства самодельного теплового насоса

Тепловой насос Френетта – принцип работы и возможность самостоятельного изготовления

Стремление вложить поменьше и получить побольше всегда было сильно в нашем народе. Не обошла стороной эта особенность и такую практичную область, как эффективное теплоснабжение.

Множество альтернативных установок было изобретено, но лишь единицы нашли реальное применение.

В последние несколько лет активно обсуждается конструкция американского изобретателя Eugene Frenette, который в 1977 оформил патент на тепловой насос.

Как утверждают многие интернет-издания, КПД этой чудо машины может достигать 1000%, но так ли это в действительности? Прежде, чем опровергнуть или доказать это, необходимо разобраться в особенностях конструкции теплового насоса Френетта.

Конструкция и принцип работы

Согласно информации из патента № US 4143639 A, выданного 22 августа 1977, в основе работы тепловой установки лежит практическое применение повышения температуры жидкости при ее интенсивном движении.

Конструкция состоит из 2-х цилиндров, установленных друг в друга. Меньший из них находится на валу, который проходит через всю конструкцию и имеет привод к двигателю.

Он также заполнен маслом, которое при вращении нагревается о стенки цилиндра. С помощью конвекции воздуха, проходящего через прослойку между цилиндрами передается тепловая энергия.

Вентилятор обеспечивает быстрый отток нагретых воздушных масс в помещение.

Судя по сообщениям в прессе, изобретатель неоднократно совершенствовал свою конструкцию. Самый распространенный и известный вариант показан на рисунке.

В новой конструкции был убран вентилятор и внутренний цилиндр. Вместо него на ось установлены стальные диски, которые многократно увеличивают площадь контакта с жидкостью.

Путем вращения достигается эффект нагрева масла, которое из-за возникшего вихревого потока начинает поступать в верхний патрубок и дальше по системе отопления.

  • Закрытая циркуляция теплоносителя.
  • Отсутствие теплообменника как такового.
  • Энергия нагрева превышает в 10 раз мощность приводного двигателя, т.е. КПД – 1000%.

В качестве доказательства приводится совместная работа хабаровских ученых, которые долгие годы совершенствовали конструкцию теплового насоса Френетта.

В качестве основной емкости взята коническая конструкция, внутри которой располагаются диски. При их вращении жидкость начинает стремительное передвижение через отверстия, в результате чего создаются вакуумные зоны. Причем значение температуры в локальных граничных областях может достигать 10000°С.

В зависимости от скорости вращения, жидкость может переходить в следующие состояния:

Обороты двигателя/мин Описание состоянии жидкости
7600-8000 Вода нагревается до 100°С
8000-10000 Образование пара
10000-13000 Парообразование с температурой 450°С
15000 и выше Разложение воды на составляющие элементы (кислород и водород) с понижением температуры до -60°С

Звучит очень заманчиво. Тем более, что в сети Интернет можно найти как минимум 1 видеоролик, демонстрирующий рабочую модель теплового насоса Френетта, сделанного своими руками (смотрите в конце статьи).

Мощность двигателя

При увеличении площади контакта жидкости с дисками возрастает коэффициент сопротивления, что требует большей энергии для вращения вала. При средних оборотах стандартных электродвигателей 1000-1500 достичь эффекта нагрева воды без увеличения потребляемой энергии невозможно.

Частота вращения вала

Для третей схемы установки необходимая частота вращения вала должна быть не меньше 7000 об/мин. Такие параметры возможны лишь для специальных установок, которые изготавливаются под заказ. Финансовая целесообразность их закупки равна нулю.

Группа ученых из Хабаровска

Описание 3-е модели теплового насоса является лишь частичными выдержками из патента № RU2204089, выданного в ФГУ ФИПС 26 июля 2001г.

В нем упоминается лишь об увеличении эффективности получения горячей воды или пара для коммунальных или промышленных служб. О совершенствовании теплового насоса Френетта не говорится ничего, так же как и о показателях КПД выше 100%.

Интересным становится факт, что данный патент потерял свою силу из-за неуплаты взносов.

Энергоносители за или против?

Однако это еще не все. Ценовой подъем на энергоносители и высокие затраты на их доставку приводят к стремительному увеличению стоимости на тепловую и электрическую энергию. А это заставляет потребителей искать новые пути экономии. Еще из школьных учебников мы помним, что передача тепла перетекает от разогретых тел к более прохладным, но никак не обратно. Наш многовековой опыт не помнит обратной процедуры, да и наука доказательно это подтверждает. Однако хитрые современные инженерные приемы делают допустимым переход тепла в обратном направлении – от менее разогретого тела к наиболее горячему.

Схема передачи тепла в тепловом насосе

Для нас нет ничего удивительного, например, в работе холодильника. Где тепло из морозильной камеры, температура в которой чаще отрицательная, выбрасывается в окружающую среду. Если применить это тепло для обогрева зданий, а холодильную камеру заменить испытанным, постоянно функционирующим природным источником тепла, то это и будет так называемый тепловой насос.

Простой тепловой насос (воздух-воздух) которым можно обогреть жилое помещение — это привычный всем кондиционер, с функцией обогрева. Можно с успехом использовать и его, ведь сегодня есть кондиционеры которые могут работать и при значительных минусовых температурах — до -15 гр. и ниже. Однако, если мы хотим получить наибольшую эффективность и комфорт, при обогреве целого дома таким экономичным методом (а тепловой насос экономичнее обычных теновых обогревателей в три, и даже более раз), то нужно использовать более продвинутые системы.

На заметку: многие задаются вопросом — как же так, ведь есть закон сохранения энергии. Почему такое несоразмерное соотношение отдачи тепла, с потреблением электроэнергии? Весь секрет в том, что в тепловом насосе электроэнергия тратится только на электромагнитную обмотку компрессора (которая конечно нагревается, но не это тепло идет на обогрев помещения), а тепловая энергия вырабатывается, «сосется», из внешней среды, благодаря особым процессам теплового насоса (само слово насос, указывает на это). Чтобы в этом разобраться, нужно знать больше школьного курса физики. Но попробуем пройтись по азам ниже.

Обзор интернета – твердотопливный котел вырабатывающий электричество.

Речь пойдет о совместной разработке двух предприятий – «ТЕРМОФОР» (Беларусский производитель твердотопливных печей и печей для бань, и из Санкт-Петербурга). Котел, попавший в наше поле зрения носит название Отопительная печь «Индигирка». Уникальность данного аппарата в том, что помимо тепла котел генерирует электричество, не затрачивая при этом никаких ресурсов, кроме непосредственно горения дров в топке котла.

Производитель о своем уникальном котле: Получать жизненно необходимое электричество из тепла дровяной печи нам представилось более реальным. Ничего нового мы не изобретали. Просто адаптировали надежный тепловой электрогенератор к печи длительного горения. Много ли электричества можно вытянуть из бытовой печки? На пару лампочек Ильича хватит. Зарядить аккумуляторы ноутбука-мобильника-навигатора хватит. Включить телевизор-радиоприемник хватит. поставила на серийное производство новинку, аналоги которой ни в России, ни в остальном мире не замечены. Это небольшая твердотопливная отопительно-варочная печь со встроенным электрогенератором, который преобразует тепловую энергию горящего в печи топлива в электрическую энергию. Во время работы печи по прямому назначению, то есть в процессе отопления или приготовления пищи, печь генерирует постоянный ток напряжением 12 вольт и мощностью не менее 50 ватт. Много это или мало? Для пресыщенного комфортом городского жителя, наверное, мало. Для человека, по тем или иным причинам полностью отрезанного от внешнего мира и его благ — очень много. Зачастую эти спасительные 50 ватт могут стать гранью между жизнью и смертью. При современном уровне развития энергосберегающих технологий эта мощность обеспечивает весь необходимый для цивилизованной жизни набор электрических устройств. По результатам лабораторных и полевых испытаний, электрогенератор печи выходит на стабильный режим через 6—8 минут после зажигания топлива в печи. Надежность электрогенераторов не вызывает сомнений, поскольку электрогенераторы уже много лет поставляются сотням фирм-потребителей в 17 стран мира. Подобные электрогенераторы производства нашего партнера используются в оборонной промышленности многих стран, космосе, высокотехнологичных отраслях промышленности. В настоящее время изучает возможные рынки сбыта энергопечей. Очевидно, что разработка представляет интерес для военных, спасателей, геологов, туристов, дачников, рыбаков и охотников.

В планах этого года — увеличение мощности получаемого тока до 100 ватт.

teplota.kh.ua

Принцип работы теплонасоса

Особенность теплонасосов заключается в том, что они работают от природных источников энергии. Чтобы выделить тепловую энергию, насосу не нужно дизельного топлива, электроэнергии или твердого топлива.В качестве источника энергии используется вода, атмосфера и грунт. Насосы не выделяют тепла, а просто переносят его в строение. При этом используется небольшое количество электроэнергии.

Для того чтобы обеспечить дом теплом, необходимо иметь всего лишь тепловой насос и источник тепла. Принцип работы системы напоминает работу обычного холодильника, только наоборот. В этом случае тепло забирается снаружи и переправляется в дом.

Важный момент: главным элементом в альтернативной системе отопления является именно теплонасос, поэтому к его сооружению нужно подойти очень внимательно.Насос состоит из следующих элементов:

  • компрессора, который является промежуточным элементом системы;
  • испарителя. В нем происходит передача низкопотенциальной энергии;
  • дроссельного клапана, по которому хладагент (фреон) возвращается в испаритель;
  • конденсатора, где происходит охлаждение фреона и отдача тепловой энергии.

Насос работает по определенному принципу. Это выглядит приблизительно так:

Принцип работы теплонасоса. (Для увеличения нажмите)

  1. Низкопотенциальное тепло, которое выделяется от внешних источников энергии, по трубам передается в испаритель – в первый элемент в конструкции насоса. Тепло передается теплоносителями, которые способны выдерживать низкие температуры и не замерзать при этом.
  2. Здесь тепло передается к хладагенту, который циркулируется по замкнутому контуру системы. В качестве холодильного агента часто используется фреон.
  3. В компрессоре на фреон действует высокое давление, что значительно повышает его температуру.
  4. На следующем этапе хладагент поступает в конденсатор, где происходит передача тепла в контур отопительной системы. В результате тепло уходит в помещение, а фреон, охлаждаясь, возвращается в жидкое состояние.
  5. Через редукционный клапан фреон попадает обратно в испаритель, где процесс повторяется.

Исходя из принципа работы насоса, электроэнергия тратится только на работу компрессора. В результате это и делает тепловой насос самым экономичным способом передачи тепла.

Возможно, Вас заинтересует статья об особенностях тепловых насосов для отопления дома. Подробную классификацию теплонасосов Вы можете изучить в этой статье.

Гидродинамический контур

Для правильного монтажа вихревого теплогенератора необходим гидродинамический контур.

Схема подключения контура

Для его изготовления необходимы:

  • выходной манометр, для измерения давления на выходе из кавитатора;
  • термометры для измерения температуры до и после теплогенератора;
  • сбросной кран для удаления воздушных пробок;
  • краны на входе и выходе;
  • манометр на входе, для контроля давления насоса.

Гидродинамический контур упростит обслуживание и контроль за работой системы.

При наличии однофазной сети, можно использовать частотный преобразователь. Это позволит поднять скорость вращения насоса, подобрать правильную.

Вихревой теплогенератор применяется для отопления дома и подачи горячей воды. Имеет ряд преимуществ перед другими обогревателями:

  • установка теплогенератора не требует разрешительных документов;
  • кавитатор работает в автономном режиме и не требует постоянного контроля;
  • является экологически чистым источником энергии, не имеет вредных выбросов в атмосферу;
  • полная пожаро,- и взрывобезопасность;
  • меньший расход электричества. Неоспоримая экономичность, КПД приближается к 100%;
  • вода в системе не образует накипи, не требуется дополнительная водоподготовка;
  • может использоваться как для отопления, так и для подачи горячей воды;
  • занимает мало места и легко монтируется в любую сеть.

С учетом всего этого, кавитационный генератор становится более востребованным на рынке. Такое оборудование с успехом применяют для отопления жилых и офисных помещений.

Выбор типа теплового насоса

Основным показателем этой системы обогрева является мощность. От мощности в первую очередь будут зависеть и финансовые затраты на покупку оборудования и выбор того либо иного источника низкотемпературного тепла. Чем выше мощность тепловой насосной системы, тем больше стоимость комплектующих элементов.

В первую очередь имеется в виду мощность компрессора, глубина скважин для геотермических зондов, либо площадь для размещения горизонтального коллектора. Правильные термодинамические расчеты являются своеобразной гарантией того, что система будет эффективно работать.

При наличии рядом с личным участком водоема наиболее рентабельным и производительным выбором станет тепловой насос вода-вода

Для начала следует изучить участок, который планируется для монтажа насоса. Идеальным условием будет наличие на этом участке водоема. Использование варианта типа вода-вода значительно сократит объем земляных работ.

Использование тепла земли напротив предполагает большое количество работ, связанных с выемкой грунта. Системы, которые в качестве низкопотенциального тепла используют водную среду, считаются наиболее эффективными.

Устройство теплового насоса, извлекающего тепловую энергию из грунта, предполагает проведение внушительного количества земляных работ. Закладывается коллектор ниже уровня сезонного промерзания

Использовать тепловую энергию грунта можно двумя способами. Первый предполагает бурение скважин диаметром 100-168 мм. Глубина таких скважин, в зависимости от параметров системы, может достигать 100 м и более.

В эти скважины помещают специальные зонды. При втором способе используется коллектор из труб. Такой коллектор размещается под землей в горизонтальной плоскости. Для этого варианта необходимо достаточно большая площадь.

Для укладки коллектора идеальными считаются участки с влажным грунтом. Естественно, бурение скважин обойдется дороже, нежели горизонтальное расположение коллектора. Однако не на каждом участке есть свободные площади. На один кВт мощности теплового насоса нужно от 30 до 50м² площади.

Сооружение для забора тепловой энергии одной глубокой скважиной может оказаться немногим дешевле рытья котлована

Но веский плюс заключается в существенной экономии места, что важно для владельцев небольших участков. В случае с наличием на участке высоко залегающего горизонта грунтовых вод, теплообменники можно устроить в двух расположенных на расстоянии около 15 м друг от дружки скважинах. В случае с наличием на участке высоко залегающего горизонта грунтовых вод, теплообменники можно устроить в двух расположенных на расстоянии около 15 м друг от дружки скважинах

В случае с наличием на участке высоко залегающего горизонта грунтовых вод, теплообменники можно устроить в двух расположенных на расстоянии около 15 м друг от дружки скважинах.

Отбор тепловой энергии в таких системах путем перекачивания грунтовой воды по замкнутому контуру, части которого расположены в скважинах. Такая система нуждается в установке фильтра и периодической чистке теплообменника.

Самая простая и дешевая схема теплового насоса основана на извлечении тепловой энергии из воздуха. Некогда она стала базой для устройства холодильников, позже согласно ее принципам разработаны были кондиционеры.

Самая простая тепловая насосная система получает энергию из воздушной массы. Летом она участвует в отоплении, зимой в кондиционировании. Минус системы в том, что в самостоятельном исполнении агрегат с недостаточной мощностью

Эффективность различных типов данного оборудования не одинакова. Наименьшими показателями обладают насосы, использующие воздушную среду. К тому же эти показатели напрямую зависят от погодных условий.

Грунтовые разновидности тепловых насосов имеют стабильные показатели. Коэффициент эффективности данных систем варьируется в пределах 2,8 -3,3. Наибольшей эффективность обладают системы вода-вода. Это связано, в первую очередь, со стабильностью температуры источника.

Надо заметить, что чем глубже расположен в водоеме коллектор насоса, тем стабильнее будет температура. Для получения мощности системы в 10КВт, необходимо около 300 метров трубопровода.

Основным параметром, характеризующим эффективность работы теплового насоса, считается его коэффициент преобразования. Чем выше коэффициент преобразования, тем эффективнее считается тепловой насос.

Коэффициент преобразования теплового насоса выражается через отношение показателей теплового потока и электрической мощности, затраченной на работу компрессора

Варианты конструкции насоса Френетта

Евгений Френетт не только изобрел устройство, названное его именем, но и неоднократно его усовершенствовал, придумывая все новые, более эффективные варианты прибора. В самом первом насосе, который изобретатель запатентовал в 1977 году, были использованы только два цилиндра: наружный и внутренний. Полый наружный цилиндр был больше диаметром и находился в статичном состоянии. Диаметр внутреннего цилиндра при этом был немного меньше, чем размеры полости наружного цилиндра.

Это схема самого первого варианта теплового насоса Френетта. Вращающийся вал расположен горизонтально, теплоноситель помещен в узкое пространство между двумя рабочими цилиндрами

В получившееся узкое пространство между стенками двух цилиндров изобретатель залил жидкое масло. Разумеется, та часть конструкции, в которой находился этот жидкий теплоноситель, была тщательно заделана, чтобы не допустить протечек масла.

Внутренний цилиндр соединяют с валом электродвигателя таким образом, чтобы обеспечить его быстрое вращение относительно неподвижного большого цилиндра. На противоположном торце конструкции был помещен вентилятор с крыльчаткой. Во время работы масло разогревалось и передавало тепло воздуху, окружающему устройство. Вентилятор позволял быстро распространить теплый воздух по всему объему помещения.

Поскольку нагревалась эта конструкция довольно, ради удобного и безопасного использования конструкция была спрятана в защитный корпус. Разумеется, в корпусе были сделаны отверстия для циркуляции воздуха. Полезным дополнением к конструкции стал термостат, с помощью которого работу насоса Френетта можно было автоматизировать до некоторой степени.

Центральная ось в такой модели теплового насоса расположена вертикально. Двигатель находится внизу, затем установлены вложенные друг в друга цилиндры, а сверху находится вентилятор. Позднее появилась модель с горизонтальным расположением центральной оси.

Модель теплового насоса Френетта с горизонтально ориентированным вращающимся валом была использована вместе с радиатором отопления, внутри которого циркулировало нагретое масло

Именно такое устройство впервые было использовано в сочетании не с вентилятором, а с радиатором отопления. Двигатель помещен сбоку, а вал ротора проходит через вращающийся барабан и выходит наружу. В устройстве этого типа вентилятор отсутствует. Теплоноситель из насоса по трубам перемещается в радиатор. Подобным же образом нагретое масло можно вывести и на другой теплообменник или же прямо в трубы отопления.

Позднее конструкция теплового насоса френетта была существенно изменена. Вал ротора по-прежнему остался в горизонтальном положении, а вот внутренняя часть была сделана из двух вращающихся барабанов и помещенной между ними крыльчатки. В качестве теплоносителя здесь снова используется жидкое масло.

В этом варианте теплового насоса Френетта два цилидра вращаются рядом, они разделены крыльчаткой особой конструкции из очень прочного металла

При вращении этой конструкции масло дополнительно нагревается, поскольку проходит через специальные отверстия, сделанные в крыльчатке, а затем проникает в узкую полость между стенками корпуса насоса и его ротором. Таким образом, эффективность насоса Френетта была существенно повышена.

По краям крыльчатки для теплового насоса Френетта сделаны небольшие отверстия. Теплоноситель быстро и эффективно нагревается, проходя через них

Однако стоит отметить, что для изготовления в домашних условиях этот тип насоса не слишком подходит. Для начала понадобится найти достоверные чертежи или рассчитать конструкцию самостоятельно, а это под силу только опытному инженеру. Затем понадобится найти особую крыльчатку с отверстиями подходящего размера. Этот элемент теплового насоса работает при повышенных нагрузках, поэтому он должен быть выполнен из очень прочных материалов.

Принцип работы устройства

Тем, кто соприкасался с вопросами экономически выгодного отопления, название “тепловой насос” хорошо знакомо. Особенно в сочетании с терминами типа “земля-вода”, “вода-вода”, “вода-воздух” и т.п. Такой тепловой насос с устройством Френетта не имеет практически ничего общего, кроме разве что названия и конечного результата в виде тепловой энергии, которую в итоге используют для обогрева.

Тепловые насосы, работающие на принципе Карно, очень популярны и как экономически выгодный способ организации отопления, и как экологически безопасная система. Работа такого комплекса устройств связана с накоплением низкопотенциальной энергии, содержащейся в природных ресурсах (земле, воде, воздухе), и преобразованием ее в тепловую энергию с высоким потенциалом. Изобретение Евгения Френетта устроено и работает совершенно иначе.

Галерея изображений Фото из Генерирующую тепло систему, разработанную Е. Френеттом, нельзя безоговорочно отнести к классу тепловых насосов. По конструктивным и технологическим признакам это обогреватель

Агрегат не использует гео- или гелио-источники энергии в своей работе. Находящийся внутри него масляный теплоноситель разогревается от силы трения, создаваемой вращающимися металлическими дисками

Рабочий орган насоса — маслонаполненный цилиндр, внутри которого расположена ось вращения. Это стальной стержень, оснащенный установленными примерно через 6 см параллельными дисками

Центробежная сила выталкивает разогретый теплоноситель в присоединенный к прибору змеевик. Нагретое масло выходит из прибора в верхней точке соединения. Остывший теплоноситель возвращается обратно снизу

Внешний вид теплового насоса Френетта

Разогрев прибора во время работы

Основные конструктивные составляющие

Реальные размеры одной из моделей

Принцип действия этого прибора основан на использовании тепловой энергии, которая выделяется при трении. В основе конструкции — металлические поверхности, расположенные не вплотную друг к другу, а на некотором расстоянии. Пространство между ними заполняют жидкостью. Части устройства вращаются относительно друг друга с помощью электромотора, жидкость, находящаяся внутри корпуса и контактирующая с вращающимися элементами, разогревается.

Полученное тепло можно использовать для нагрева теплоносителя. Некоторые источники рекомендуют использовать эту жидкость непосредственно для отопительной системы. Чаще всего к самодельному насосу Френетта присоединяют обычный радиатор. В качестве жидкости для нагрева специалисты настоятельно рекомендуют использовать масло, а не воду.

В процессе работы насоса этот теплоноситель имеет свойство разогреваться очень сильно. Вода в таких условиях может просто закипеть. Горячий пар в замкнутом пространстве создает избыточное давление, а это обычно приводит к разрыву труб или корпуса. Использовать масло в такой ситуации намного безопаснее, поскольку его температура кипения значительно выше.

Для изготовления теплового насоса Френетта потребуется двигатель, радиатор, несколько труб, стальной дисковый затвор, стальные диски, металлический или пластиковый стержень, металлический цилиндр и гаечный набор (+)

Бытует мнение, что КПД такого теплогенератора превышает 100% и даже может составлять 1000%. С точки зрения физики и математики это не совсем корректное утверждение. КПД отражает потери энергии, затраченные не на обогрев, а собственно на работу прибора. Скорее феноменальные утверждения о невероятно высоком КПД насоса Френетта отражают его эффективность, которая действительно впечатляет.

Затраты электроэнергии на работу прибора ничтожны, а вот количество полученного в результате тепла весьма ощутимы. Нагрев теплоносителя до таких же температур с помощью ТЭНа, например, потребовал бы значительно большего количества электроэнергии, возможно, в десятки раз больше. Бытовой обогреватель при таком расходе электричества даже не нагрелся бы.

Почему же такими приборами не оборудованы все подряд жилые и промышленные помещения? Причины могут быть разными. Все же вода — более простой и удобный теплоноситель, чем масло. Она не нагревается до таких высоких температур, и устранить последствия протечек воды проще, чем убрать разлитое масло.

Еще одна причина может быть в том, что к моменту изобретения насоса Френетта централизованная система отопления уже существовала и успешно функционировала. Ее демонтаж для замены на теплогенераторы обошелся бы слишком дорого и доставил бы массу неудобств, поэтому такой вариант никто всерьез даже не рассматривал. Как говорится, лучшее — враг хорошего.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Наш Бастион
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector