Расчет и выбор циркуляционного насоса

Применение циркуляционных насосов в отоплении дома

Поскольку выше уже были упомянуты некоторые особенности эксплуатации циркуляционных насосов для воды в различных схемах отопления, следует подробнее коснуться главных черт их организации. Стоит отметить, что в любом случае нагнетатель ставится на трубе обратной подачи, если домашнее отопление подразумевает подъем жидкости на второй этаж — там устанавливается еще один экземпляр нагнетателя.

Закрытая система

Самая главная черта закрытой системы отопления — герметизация. Здесь:

  • теплоноситель никак не соприкасается с воздухом в помещении;
  • внутри герметичной системы трубопроводов давление выше атмосферного;
  • расширительный бак построен по схеме гидрокомпенсатора, с мембраной и областью воздуха, создающего обратное давление и компенсирующая расширение теплоносителя при нагревании.

Достоинств у закрытой системы отопления множество. Это и возможность провести обессоливание теплоносителя для нулевого осадка и накипи на теплообменнике котла, и заливка антифриза для предотвращения замерзания, и возможность использовать для передачи тепла широкий ряд составов и веществ, начиная от водно-спиртового раствора, заканчивая машинным маслом.

Схема закрытой системы отопления с насосом однотрубного и двухтрубного типа выглядит следующим образом:

При установке гаек Маевского на радиаторах отопления улучшается настройка контура, не нужна отдельная система выпуска воздуха и предохранители перед циркуляционным насосом.

Открытая система отопления

Внешние характеристики открытой системы похожи на закрытую: те же трубопроводы, радиаторы отопления, расширительный бак. Но есть кардинальные отличия в механике работы.

  1. Основная движущая сила теплоносителя — гравитационная. Нагретая вода поднимается вверх по разгонной трубе, для увеличения циркуляции ее рекомендуют делать как можно длиннее.
  2. Трубы подачи и обратки располагают под наклоном.
  3. Расширительный бак — открытого типа. В нем теплоноситель соприкасается с воздухом.
  4. Давление внутри открытой системы отопления равно атмосферному.
  5. Циркуляционный насос, установленный на обратке подачи, выполняет роль усилителя циркуляции. Его задача состоит также в компенсации недостатков системы трубопроводов: излишнего гидравлического сопротивления из-за избыточных стыков и поворотом, нарушение углов наклона и прочего.

Открытая система отопления требует обслуживания, в частности, постоянном доливе теплоносителя для компенсации испарения из открытого бака. Также в сети трубопроводов и радиаторов постоянно идут процессы коррозии, из-за чего вода насыщается абразивными частицами, и рекомендуется устанавливать циркуляционный насос с сухим ротором.

Схема открытой системы отопления выглядит следующим образом:

Открытую систему отопления при правильных углах наклона и достаточной высоте разгонной трубы можно эксплуатировать и при отключении электропитания (прекращении работы циркуляционного насоса). Для этого в структуре трубопроводов делают байпас. Схема отопления выглядит так:

При прекращении подачи электричества достаточно открыть кран на обводной петле байпаса, чтобы система продолжила работу на гравитационной схеме циркуляции. Данный блок также делает более простым начальный запуск отопления.

Система теплый пол

В системе теплого пола правильный расчет циркуляционного насоса и выбор надежной модели — гарантия стабильной работы системы. Без принудительного нагнетания воды такая структура просто не может работать. Принцип установки насоса следующий:

  • на входной патрубок подается горячая вода из котла, которая через блок смесителя перемешивается с обраткой теплого пола;
  • подающий коллектор для теплого пола присоединяется к выходному патрубку насоса.

Распределительно-регулирующий узел теплого пола выглядит следующим образом:

Система работает по следующему принципу.

  1. На входе насоса устанавливается основной терморегулятор, управляющий смесительным узлом. Он может получать данные из внешнего источника, например, выносных датчиков в комнате.
  2. В подающий коллектор приходит горячая вода установленной температуры и расходится по сети теплого пола.
  3. Пришедшая обратка имеет более низкую температуру, чем подача из котла.
  4. Терморегулятор с помощью узла смесителя меняет пропорции горячего потока котла и остывшей обратки.
  5. Через насос подается вода установленной температуры на входной распределительный коллектор теплого пола.

1 Сфера применения

Основная функция такого устройства, как нагнетательный насос, — усиление давления в системе, благодаря чему теплоноситель движется по контуру намного быстрее, чем с применением естественной схемы. Существует распространённая проблема — в последние точки (радиаторы) в контуре попадает уже остывший теплоноситель. Из-за этого в доме постоянно холодно. Как правило, это свойственно последним этажам здания.

Но это характерно не только для многоквартирных домов. В отоплении частного дома с естественной циркуляцией также существует такая проблема, когда последняя батарея очень слабо нагревается. Причина та же — слабое давление в системе и, соответственно, медленная циркуляция теплоносителя. Решается это в обеих ситуациях одним способом — расчёт для системы отопления циркуляционного насоса и его установка.

После установки такого оборудования теплоноситель благодаря сильному давлению будет разгоняться до достаточной скорости для обеспечения попадания тёплой воды к последним точкам. Кроме этого, существует возможность установки дополнительного оборудования, тёплого пола, автоматики и т. п.

Конструкция такого оборудования не является сложной и представляет собой мотор с валом, который передаёт вращательный момент ротору. Непосредственно на роторе и установлена крыльчатка. С её помощью создаётся нагнетательный эффект, и усиливается давление в системе, то есть насос как будто разгоняет воду. Вода начинает течь быстрее.

Более современные модели могут иметь несколько режимов, в каждом из которых создаётся разное давление перемещающейся по нему воды. Это очень удобно и экономично. При необходимости быстрого обогрева дома можно включить насос на максимальную мощность, а после того, как в доме будет оптимальная температура — включить щадящий режим.

Делить циркуляционные насосы можно по разным критериям, начиная от мощности и производительности и заканчивая производителем. Но есть и основные большие подкатегории такого оборудования. К ним можно отнести подразделение на моторы:

  • с сухим ротором;
  • с мокрым ротором.

В первой категории только часть элементов непосредственно контактируют с водой (так называемая мокрая часть), а во втором виде устройство полностью находится в водной среде. Какой выбирать, зависит от многих факторов, в первую очередь, от особенностей системы.

Подбор циркуляционного насоса для системы отопления

Иногда перед человеком, уже посадившим дерево и вырастившим сына, встает вопрос – а как подобрать циркуляционный насос для отопительной системы возводимого дома? И от ответа на этот вопрос зависит многое – будут ли равномерно прогреты все радиаторы, будет ли скорость потока теплоносителя в

отопительной системе достаточной, и в то же время не превышенной, не будет ли гула в трубопроводах, не будет ли насос потреблять лишнюю электроэнергию, правильно ли будут работать термостатические вентили отопительных приборов и так далее и тому подобное. Ведь насос – это сердце отопительной системы, которое неустанно качает теплоноситель – кровь дома, наполняющую дом теплом.

Подобрать циркуляционный насос для отопительной системы небольшого здания, проверить, правильно ли насос подобран продавцами в магазине, или убедиться в правильности подбора насоса, стоящего в существующей системе отопления, достаточно просто, если воспользоваться укрупненным методом расчета. Основной параметр подбора циркуляционного насоса – это его производительность, которая должна соответствовать тепловой мощности обслуживаемой им отопительной системы.

Необходимую производительность циркуляционного насоса с достаточной точностью можно рассчитать по простой формуле:

где Q – необходимая производительность насоса в кубометрах в час, Р – тепловая мощность системы в киловаттах, dt – дельта температур – разница температур теплоносителя в подающем и обратном трубопроводе. Обычно принимается равной 20 градусам.

Итак, пробуем. Возьмем, для примера, дом общей площадью 200 квадратных метров, в доме есть подвал, 1 этаж и мансарда. Система отопления двухтрубная. Необходимую тепловую мощность, требуемую для обогрева такого дома, примем 20 киловатт. Производим несложные вычисления, получаем – 0,86 кубометра в час. Округляем, и принимаем производительность необходимого циркуляционного насоса – 0,9 кубических метра в час. Запомним ее и идем дальше. Второй важнейшей характеристикой циркуляционного насоса является напор. Каждая гидравлическая система имеет сопротивление пропускаемому по ней потоку воды. Каждый угол, тройник, редуцирующий переход, каждый подъем – все это местные гидравлические сопротивления, сумма которых и составляет гидравлическое сопротивление отопительной системы. Циркуляционный насос должен преодолеть это сопротивление, с сохранением расчетной производительности.

Точный расчет гидравлического сопротивления сложен и требует определенной подготовки. Чтобы примерно рассчитать необходимый напор циркуляционного насоса используется формула:

где N – количество этажей здания, включая подвал, K – усредненные гидравлические потери на один этаж здания. Коэффициент К принимается 0,7 – 1,1 метра водяного столба для двухтрубных систем отопления и 1,16-1,85 для коллекторно-лучевых систем. В нашем доме три уровня, с двухтрубной отопительной системой. Коэффициент К принимаем 1,1 м.в.с. Считаем, 3 х 1,1 = 3,3 метра водяного столба.

Обратите внимание – общая физическая высота отопительной системы, от нижней до верхней точки, в таком доме составляет порядка 8 метров, а напор необходимого циркуляционного насоса только 3,3 метра. Каждая отопительная система является равновесной, насосу не нужно поднимать воду, он только преодолевает сопротивление системы, поэтому увлекаться большими напорами никакого смысла нет

Итак, мы получили два параметра циркуляционного насоса, производительность Q, m/h = 0,9 и напор, Н, м = 3,3. Точка пересечения линий от этих величин, на графике гидравлической кривой циркуляционного насоса, является рабочей точкой необходимого циркуляционного насоса.

Допустим, Вы решили остановиться на отличных насосах DAB, итальянских насосах великолепного качества по совершенно адекватной цене. Пользуясь каталогом, или менеджерами нашей компании, определяете группу насосов, в параметры которых попадает необходимая рабочая точка. Решаем, что этой группой будет группа VA. Выбираем наиболее подходящий график гидравлической кривой, лучше всего подходит кривая насоса VA 55/180 X.

Рабочая точка насоса должна находиться в средней трети графика – эта зона является зоной максимального КПД насоса. Для подбора выбирайте график второй скорости, в этом случае Вы страхуете себя от недостаточной точности укрупненного расчета – у Вас останется резерв для увеличения производительности на третьей скорости и возможность ее уменьшения на первой.

Расчет насоса для системы отопления

Подбор циркуляционного насоса для отопления

Тип насоса должен быть обязательно циркуляционным, для отопления и выдерживать большие температуры (в пределах до 110 °С).

Основные параметры подбора циркуляционного насоса:

2. Максимальный напор, м.

Для более точного расчета, необходимо увидеть график напорно-расходной характеристики

Характеристика насоса – это напорно-расходная характеристика насоса. Показывает, как изменяется расход при воздействии определенного сопротивления потерь напора в системе отопления (целого контурного кольца). Чем быстрее движется теплоноситель в трубе, тем больше расход. Чем больше расход, тем больше сопротивления (потерь напора).

Поэтому, в паспорте указывают максимально возможный расход при минимально возможном сопротивлении системы отопления (одного контурного кольца). Любая система отопления оказывает сопротивление движению теплоносителя. И чем она больше, тем меньше окажется расход в целом на систему отопления.

Точка пересечения показывает реальный расход и потерю напора (в метрах).

Характеристика системы – это напорно-расходная характеристика системы отопления в целом для одного контурного кольца. Чем больше расход, тем больше сопротивление движению. Поэтому, если установлено для системы отопления качать: 2 м 3 /час, то насос нужно подобрать таким образом, чтобы удовлетворить данный расход. Грубо говоря, насос должен справиться с необходимым расходом. Если сопротивление отопления высокое, то насос должен обладать большим напором.

Для того, чтобы определить максимальный расход насоса, необходимо знать расход вашей системы отопления.

Для того чтобы определить максимальный напор насоса необходимо знать, какое сопротивление будет испытывать система отопления при заданном расходе.

Расход системы отопления.

Расход строго зависит от необходимого переноса тепла по трубам. Чтобы найти расход необходимо знать следующее:

2. Разница температур (Т1 и Т2) подающего и обратного трубопровода в системе отопления.

3. Средняя температура теплоносителя в системе отопления. (Чем ниже температура, тем меньше теряется тепло в системе отопления)

Предположим, что отапливаемое помещение потребляет 9 кВт тепла. И система отопления рассчитана, так чтобы отдать 9 кВт тепла.

Это означает, что теплоноситель, проходя через всю систему отопления (три радиатора) теряет свою температуру (Смотри изображение). То есть температура в точке Т1 (на подаче) всегда больше Т2 (на обратке).

Чем больше расход теплоносителя через систему отопления, тем ниже разница температур между подающей и обратной трубой.

Чем выше разница температур при неизменном расходе, тем больше тепла теряется в системе отопления.

С – теплоемкость теплоносителя воды, С=1163 Вт/(м 3 •°С) или С=1,163 Вт/(литр•°С)

Q – расход, (м 3 /час) или (литр/час)

t1 – Температура подающего теплоносителя

t2 – Температура остывшего теплоносителя

Поскольку потери помещения маленькие, я предлагаю посчитать через литры. Для больших потерь используйте м 3

Необходимо определиться какая разница температур будет между подающим и остывшим теплоносителем. Вы можете выбрать абсолютно любую температуру, от 5 до 20 °С. От выбора температур будет зависеть расход, а расход создаст некоторые скорости теплоносителя. А, как известно движение теплоносителя создает сопротивление. Чем больше расход, тем больше сопротивление.

Для дальнейшего расчета я выбираю 10 °С. То есть на подаче 60 °С на обратке 50 °С.

t1 – Температура подающего теплоносителя: 60 °С

t2 – Температура остывшего теплоносителя: 50 °С.

W=9 кВт = 9000 Вт

Из вышеуказанной формулы получаю:

Ответ: Мы получили необходимый минимальный расход 774 л/ч

Сопротивление системы отопления.

Сопротивление системы отопления будем измерять в метрах, потому, что это очень удобно.

Предположим, что мы уже рассчитали это сопротивление и оно равно 1,4 метров при расходе в 774 л/ч

Очень, важно понять, что чем выше расход, тем больше сопротивление. Чем ниже расход, тем меньше сопротивление

Поэтому при данном расходе в 774 л/ч мы получаем сопротивление 1,4 метров.

И так мы получили данные, это:

Расход = 774 л/ч = 0,774 м 3 /ч

Сопротивление = 1,4 метров

Далее по этим данным подбирается насос.

Рассмотрим циркуляционный насос с расходом до 3 м 3 /час (25/6) 25 мм-диаметр резьбы, 6 м – напор.

Желательно когда подбираете насос, посмотреть реальный график напорно-расходной характеристики. Если его не имеется, то рекомендую просто провести прямую линию на графике с указанными параметрами

Тут расстояние между точками A и B – минимальны, и поэтому данный насос подходит.

Его параметры будут равны:

Максимальный расход 2 м 3 /час

Максимальный напор 2 метра

Расчет параметров насоса

В системах отопления устанавливают циркуляционные насосы. Они не создают избыточного давления, а просто проталкивают теплоноситель с определенной скоростью. Так как потребность в тепле меняется в зависимости от погодных условий, то и скорость движения теплоносителя должна меняться. Потому лучше устанавливать регулируемые насосы — трехскоростные.

Перед покупкой следует определиться с двумя основными параметрами: производительностью (расходом) и напором. Если теплоносителем будет выступать вода, рассчитывают производительность насоса по следующей формуле:

Q = 0,86*Pн/(tпр.т — tобр.т)

  • Pн — мощность отопительного контура, кВт;
  • tобр.т — температура теплоносителя в обратке
  • tпр.т — температура подачи.

Разница температур в системах водяного отопления составляет обычно 5оС, мощность контура чаще всего зависит от отапливаемой площади, потому для упрощения побора насоса для водяного теплого пола можно воспользоваться таблицей. Но нужно учесть, что при расчетах брались средние цифры для средней полосы России. Потому, если у вас дом имеет не лучшее утепление, или вы живете значительно севернее или южнее средней полосы, вам придется скорректировать результат (или посчитать самостоятельно). Вообще, этот параметр берут с запасом 15-20% на случай аномальных холодов.

Таблица определения производительности насоса в зависимости от отапливаемой площади

Вторая характеристика, по которой подбирают насос — это напор, который он может создавать. Напор необходим для преодоления гидравлического сопротивления труб, фитингов, других компонентов системы. Сопротивление системы зависит от материала трубы и ее диаметра. Значение гидравлического сопротивления трубы имеется в сопроводительных документах к ним (можно воспользоваться усредненными данными). Также в расчет принимают увеличение сопротивления на вентиле (1,7), на арматуре и фитингах (1,2) и на смесительном узле (необходим при использовании высокотемпературного котла и коэффициент для него 1,3).

H= (П*L + ΣК) /(1000),

  • H — напор насоса;
  • П — гидравлическое сопротивление погонного метра трубы,
  • Па/м; L — длина труб наиболее протяженного контура, м;
  • К — коэффициент запаса мощности.

Для расчета требуемого напора в контуре паспортное гидравлическое сопротивление метра трубы умножают на длину контура. Получают значение в кПа (килопаскалях). Переводят это значение в атмосферы (напор насосов измеряется в атмосферах) 100 кПа=0,1 атм. Найденное значение в зависимости от наличия арматуры и вентилей умножают на соответствующие коэффициенты. После всех операций вы нашли рабочую точку насоса.

По графической характеристике выбираете модель

Но расчет насоса для теплого пола еще не окончен. Теперь нужно выбрать модель. Для этого в каталоге понравившегося производителя находите характеристику насоса. Она представлена в виде графика. Подбираете модель так, чтобы найденная рабочая точка находилась в средней трети характеристики. Если устанавливать будете трехскоростной вариант, то подбирайте модель по второй скорости — так обеспечите оптимальный, а не на пределе, режим работы и ваш насос будет служить долго и обеспечит нормальную температуру даже в холодные дни.

Технические характеристики

На современном рынке представлено несколько моделей циркуляционных насосов. Каждая модель предполагает конкретные рабочие характеристики, в соответствии с определенными функциональными особенностями.

Все это отражается в техническом паспорте, который есть у каждого прибора

Выделяют 3 главных параметра, на которые стоит обратить внимание прежде всего:

  • производительность;
  • напор;
  • расход.

Напор

Иногда такой показатель обозначают как «давление». Его измеряют в атмосферах или «водяных столбах» и указывают на специальной бирке, которая прикреплена к корпусу помпы. Если же такой бирки нет, то искать информацию следует в техническом паспорте прибора.

Существуют правила выбора оптимального показателя давления:

  1. Рассчитывайте напор для каждого помещения отдельно.
  2. Исключите значимые гидравлические потери в трубах и их соединениях.
  3. Проанализируйте график мощности давления, который указан в техпаспорте.
  4. Определите необходимый напор.
  5. Найдите сумму всех изгибов и поворотов труб, тройников и других гидравлических сопротивлений системы.

При этом вычисление сопротивления выполняется без учета высоты сооружения. Поскольку высота подъема воды не сильно важна. Особенно четко это проявляется в замкнутой системе, где высота столба воды и падающей линии находятся в равновесии.

Числа представляют собой не просто порядковый номер, они заключают в себе определенную информацию. Так, 25 в маркировке необходима для того, чтобы вы могли определить подходящий диаметр труб отопления. Он составляет 25 миллиметров.

Второе число – 40 – обозначает высоту подачи и подъема горячей воды. Она составляет 4 метра (0,4 атмосферы). Зная такой параметр, можно безошибочно выбрать размер помпы для этой системы.

Расход

Правильно определить величину нагрузки на отопление очень важно. Лучше всего воспользоваться для этого специальной программой, которая помогает вычислить количество тепла по теплопотерям или общим показателям

Для российских домов такой показатель составляет 120 и более Вт на квадратный метр, а для европейских – 100 Вт на м2. Это обусловлено климатическими особенностями регионов.

Также рассчитать оптимальный расход можно при помощи формулы: G= (Q/ (t2- t1)) х103, где:

  • Q – это нагрузка на отопление, которая зависит от выбранного вами количества тепла;
  • G – расход теплоносителя в отопительной системе;
  • t2 t1 – параметр воды на входе и в обратке, соответственно.

Как правило, температура в контуре t1 составляет от 60 до 70 градусов. Величина t2 находится в пределах от 90 до 95 градусов.

Такие показатели указаны в специальном температурном графике. Используя эту формулу, нельзя добиться идеально точного расчета. Однако ее достаточно, чтобы выявить оптимальные параметры.

Если же вы не хотите работать с формулами и таблицами, можно воспользоваться уже готовыми нормами.

Так, для комнаты площадью 10 квадратных метров (высота помещения может быть любая) необходимо взять 1 киловатт мощности котла. 1 секция батареи или радиатора берется как 200 Вт.

В результате получается, что для обогрева помещения в 10 м2 необходим радиатор с 5 секциями (-/+ 2 секции). Затем необходимо сложить объем секций во всех комнатах, он будет равен G + 3-5%.

Производительность

Вычислить такой параметр также можно при помощи формулы. Однако у математических расчетов есть один существенный минус – они не учитывают воздействие внешних факторов. Поэтому необходимо корректировать вычисления с учетом нескольких факторов:

  1. Температура окружающей среды. Температура воздуха существенно влияет на эффективность отопительной системы. Если она слишком низкая, то прибор будет работать заметно хуже.
  2. Диаметр труб. Это один из самых важных параметров. Чем больше размер труб, тем выше производительность устройства. Однако для габаритных труб нужен соответствующий насос.
  3. Вязкость теплоносителя. Теплоноситель всегда более вязкий, чем вода. Поэтому характеристики теплоносителя влияют на мощность помпы.
  4. Периодичность циркуляции. Следует обязательно учитывать, как часто будет использоваться насос. Если периодичность небольшая, то можно сделать выбор в пользу помпы небольшой мощности. Для систематического использования следует выбирать более производительные и износостойкие модели.
  5. Присутствие двойного отопительного контура. Если циркуляционная помпа установлена вместе с естественной циркуляционной системой, то нагрузка на прибор будет довольна большая. А значит, следует выбирать максимально мощную и надежную конструкцию.

Нужен ли насос на теплый водяной пол

Насос обеспечивает циркуляцию воды в контуре, благодаря чему поверхность равномерно прогревается и защищает дом от теплопотерь, что особенно важно для регионов с экстремально морозными зимами. Установка такого прибора обязательна, но не во всех случаях

Считается, что если площадь пола небольшая (до 40-50 м2), монтировать такой прибор не нужно.

Во всех остальных вариантах монтаж насоса нужен, причем не только по причине комфорта, но и в силу некоторых технических особенностей:

  1. Зачастую для обогрева используют трубы с малым сечением, поэтому в них возникают большие теплопотери. Из-за этого сам котел будет перегреваться, понадобится большее количество твердого топлива.
  2. Отдельные виды покрытия пола не переносят высоких температур – например, ламинат, дуб деформируется. Поэтому они нуждаются в равномерном распределении тепла, что и обеспечивает водяной насос. В расчете таких схем обязательно учитывают смесительный узел, позволяющий поддерживать нужный режим.
  3. Стены дома выполняют из одного материала, который обладает одинаковым значением теплоемкости. Однако полы чаще всего изготавливают из разных материалов. Например, в ванной комнате присутствует керамическое покрытие, а в других помещениях полы могут быть наливными. Поскольку теплоемкости отличаются, появляется необходимость в равномерном распределении тепла.

Внимание! Чаще всего не стоит рассчитывать на то, чтобы контур пола и группа нагревателей работали от одного и того же котла. Параметры этих систем ощутимо отличаются

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Наш Бастион
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector