Способы зимнего бетонирования
Итак, бетонирование при заморозках возможно только в том случае, если удастся предотвратить кристаллизацию воды. Существует несколько методов выполнить поставленную задачу:
Противоморозные добавки
Контейнер с антифризом для бетона
Вы, возможно, слышали что-то о различных модифицирующих добавках для бетона, применяющихся для улучшения качества цементных растворов. Среди них есть такие, которые справляются с предотвращением преждевременного замерзания воды. Можно выделить три основные группы таких модификаторов:
№ группы | Представители | Оказываемое воздействие |
1 | Электролиты различного уровня силы, неэлектролиты, карбамид, многоатомные спирты. | Слабое, но при этом устойчивое ускорение процесса образования цементного камня. |
2 | Модифицирующие смеси на основе хлорида кальция. | Значительное увеличение скорости твердения бетона в сочетании с антифризовой защитой. |
3 | Трёхвалентные сульфаты на основе железа. | Быстрый набор прочности с выделением большого количества тепловой энергии. |
- Доступная цена. Стоимость их использования выходит ниже вариантов применения электрического оборудования.
- Простота эксплуатации своими руками. По большому счёту вам достаточно просто добавить купленную смесь в раствор.
Замешивать бетон на морозе следует тщательнее
Эффективный результат. Вы можете с помощью описываемых средств как защитить раствор от промерзания на период застывания, так и сократить период схватывания, чтобы цемент не успел испортиться.
Но есть и отрицательная сторона: с использованием антифризовых добавок можно бетонировать при морозе не ниже -10 градусов Цельсия, из-за чего иногда приходится сочетать их с другими методами защиты бетона от промерзания.
Нагревательный кабель
Укладка обогревающего провода по армированным прутьям
Инструкция реализации такого метода выглядит так:
- Перед заливкой раствора прокладываем специальный одножильный провод, фиксируя его к элементам арматуры и опалубки, так чтобы он оказался внутри будущей конструкции.
Процесс монтажа системы электрического обогрева
- Выводим концы наружу, в необогреваемую зону.
- Подсоединяем к трансформатору.
Подключение к трансформаторам
- Заливаем раствор и включаем систему.
Несмотря на некоторую трудоёмкость осуществления прогрева бетона электрическим проводом и немалую стоимость, он является наиболее эффективным, потому что:
- Спокойно выдерживает морозы до -30 градусов Цельсия.
- Обогревает всю структуру, а не только её верхнюю часть, как это происходит у последующих методов.
Так что вода в таком случае не замёрзнет, и в итоге только резка железобетона алмазными кругами сможет нанести какие либо повреждения.
Алмазное бурение отверстий в бетоне, уже набравшем свою прочность в зимний период
Сооружение шатра
Шатры на промышленном строительном объекте
Данный способ предполагает установку шатра над бетонной стяжкой и прогрев её внутри тепловыми пушками.
Но тут сразу стоит отметить связанные с таким процессом сложности:
- Большая трудоёмкость.
- Высокая стоимость.
- Ограниченность применением только к горизонтальным поверхностям.
- Охват лишь верхней зоны всей конструкции.
Утепление различными материалами
Защита бетона от холода подручными способами
Если накрыть стяжку полиэтиленовой плёнкой, досками или другими подручными материалами, то вы сможете защитить её от холода до -3 градусов Цельсия. Универсальным, конечно же, назвать такой вариант нельзя, но зато он прекрасно сочетается с другими методами прогрева, усиливая их, и не требует значительный вложений сил и финансов.
Почему промерзает бетон?
Факторы, которые сказываются на промерзании бетона:
- Плохо заполненные швы/стыки между бетонными плитами. Через них внутрь попадает влага, которая разрушает конструкцию, появляются трещины.
- Дешевый или дополнительно разбавленный раствор из бетона. Из-за некачественных материалов, материал становится промороженный с обеих сторон.
- Помещения, которые плохо отапливаются из-за неправильной конструкции отопительной системы. Если вы не исправили погрешность самостоятельно, либо не обратились в нужные спецслужбы, то “заморозили” свое помещение собственноручно.
- Трещины и повреждения металлических элементов. Внутрь просочится воздух, влага, появится коррозия. Это приводит к ускорению процессов разрушения и промерзания.
- Маленькая глубина стены.
- Плохо проветриваемое здание будет поражено промерзанием.
- Некачественная гидроизоляция (глубина и материал теплозащиты).
- Некачественное уплотнение бетона во время ремонтных работ.
- Глубина и монтаж отделочного слоя не соответствуют требованиям.
Не следует экономить на материалах и строительном процессе. В случае брака и некачественно выполненных работ, вас ждут разрушения, отсутствие гарантии безопасности и ограниченная функциональность помещения.
Размер слоя промерзания
Разновидность бетонного материала напрямую связана с его промерзанием
Обратите внимание на то, что бетон, обладающий высоким водоцементным значением, имеет меньшую толщину промерзания. У видов бетона, которые обладают водоотталкивающими свойствами, это значение больше (пользуйтесь таким бетоном)
Разработан специальный прибор толщинометр (измеряется слой, глубина и размер стены). Показатели определяются распределением электромагнитного поля. Инструмент проводит точные измерения, сравнительно с ему подобными (отклонения нет). Прибор подходит для профессионального использования (измерения с точностью до миллиметра) и для бытового.
Как производить расчеты?
Для правильности и точности замеров, обратите внимание на следующие характеристики:
- технические показатели сооружения (данные значения можно найти в документах на приобретение, сертификатов качества материалов, соглашении с предприятием);
- учтите значение градусо-суток (для жилых домов, в период функционирования отопительной системы);
- показатель сопротивления при теплопередаче (содержится в документах, сертификатах качества).
От чего зависит толщина стен?
Перед началом строительства, в зависимости от предназначения здания, рекомендуется делать расчеты целесообразности размеров (в некоторых случаях потребуется глубина) стен. Как самостоятельно подобрать нужную плотность стены? Учитывайте основные параметры:
- условия эксплуатации;
- частота/уровень механических нагрузок;
- предназначение стен.
Структуры плит перекрытия
Перекрытие монолитной плитой
Отличается усиленной прочностью, что позволяет применять их в местах с повышенным риском провисания. Максимальная защита от различных деформаций, но при этом плохая звукоизоляция. Обладает большим весом, что является существенным минусом данного вида при строительстве.
Пустотные конструкции
Чертеж пустотной плиты перекрытия.
Наиболее популярные, за счет облегчения массы изделия. Благодаря пустотам у этих плит низкая теплопроводность и хорошая шумоизоляция. Затраты на изготовление существенно меньше, чем при производстве монолитных плит. Их часто делают ребристыми или из ячеистого бетона.
Плиты перекрытия в основном изготавливаются фиксированных размеров. И при проектировке здания надо обязательно учитывать размеры стандартных выпускаемых плит. В зависимости от требований к будущей постройке, плиты классифицируются и по весу. Их масса в среднем варьируется от 500 кг до 4 т.
Использование бетонных пустотных плит при возведении фундамента осуществляется уже довольно давно. Но не всегда продумывается монтаж защиты от промерзания плит перекрытия.
Появление плесени существенно влияет на здоровье обитателей домов.
Возможные последствия зимнего бетонирования
Если во время заливки фундамента температура воздуха снижается до минусовых отметок, то возможны следующие последствия:
- залитая плита не набирает прочность;
- даже разовое замерзание может повлечь снижение технологической прочности;
- внутри бетона скапливается вода, которая из жидкого агрегатного состояния превращается в лед;
- поверхностный слой со временем облупливается, что ведет к появлению трещин;
- образовавшийся в расщелинах бетона лед снижает сцепление отдельных составляющих, что также ведет к трещинам и расслоению поверхности.
При замерзании смеси в процессе заливки в расщелинах скапливается лед, который неминуемо увеличивается в размерах и создает разрывы. Это ведет к разрыхлению монолита и снижению прочности. В итоге начинает расти влагопроницаемость. Процесс гидратации воды приводит к поднятию скопившейся жидкости на поверхность бетона. Во время заморозков растрескиванию подвергается сначала верхний слой плиты.
Во внутренней части фундамента в результате химической реакции между цементом и водой выделяется тепло. Это помогает снизить риск промерзания бетона по глубине заливки.
Если работы проводились с соблюдением оптимальных температурных условий, но после их завершения на улице резко похолодало, то возможны следующие последствия:
При временном понижении температуры сильных деформаций внутри и на поверхности залитого материала не происходит. При восстановлении погоды скопившийся в бетоне лед оттаивает. Вода никак не мешает продолжению процесса затвердевания.
- При резком понижении температуры воздуха страдает верхний залитый слой. Поверхность со временем облупляется из-за поднявшейся на самый верхний слой воды. Дело в том, что в этом случае водоцементное соотношение нарушается: внизу наблюдается недостаток влаги, а на поверхности излишек. При заморозках вода превращается в лед, что ведет к растрескиванию и повреждению конструкции.
- Если температура понижается надолго, то бетон может окончательно разрушиться. Это связано с полной остановкой процесса гидратации. Даже после оттепели прочность уже не восстановится. Остается только применять дополнительные меры защиты во время заморозков.
Если в раствор были добавлены дополнительные ингредиенты, но это не спасло ситуацию во время сильных заморозков, то наблюдаются такие последствия:
- При использовании в бетонной смеси дополнительных добавок некоторые характеристики фундамента снижаются, что влияет на уменьшение прочности конструкции. Это ведет к растрескиванию не только верхнего слоя, но и середины, а также основания.
- Из-за потери мощности бетонной конструкции возникает деформация.
- Бетон становится более подвержен перепаду температур, чем если бы был без специальных противоморозных добавок. Это ведет к образованию щелей и отверстий в основании конструкции. При попадании в них влаги происходит постепенное разрушение.
При отрицательных температурах воздуха бетон не набирает необходимой прочности. Если температура снижается, то схватывание поверхности не произойдет и возможно промерзание.
От типа используемой бетонной смеси и показателей влажности окружающей среды будет зависеть продолжительность затвердевания конструкции. При соблюдении технологических параметров работы полное затвердевание происходит уже через 27 — 30 дней. После этого срока не страшны заморозки. При неблагоприятных погодных условиях конструкция может замерзнуть даже спустя 2 месяца. После 3 — 4 месяцев схватывания морозы не страшны.
Несоблюдение технологий укладки бетона зимой приводит к получению бетонных изделий пониженной прочности, с трещинами, высолами и прочими дефектами, а также к плохому сцеплению с арматурой. Изделия получаются недолговечными в эксплуатации.
Бетонные работы зимой – чаще всего, вынужденная мера, но и в этом случае есть свои преимущества. При выборе технологии проведения зимних работ учитываются многие факторы: тип конструкций, состав бетонной смеси, наличие оборудования и экономический эффект от их применения. Противоморозные добавки желательны к применению при выборе любого метода ведения бетонных работ зимой.
Метки: бетонировать, можно, мороз
« Предыдущая запись
Прочен ли замороженный бетон?
В замороженном состоянии бетон имеет очень высокую прочность, которая даже в случае замораживания сейчас же после изготовления достигает 8—16 МПа. При увеличении срока выдерживания бетона до замораживания в нормальных условиях до 3—5 суток с понижением температуры временная прочность бетона в замороженном состоянии повышается. После 5 суток нормального твердения бетон, замороженный при температуре —20° С, имел прочность при сжатии: на портландцементе Чернореченского завода — 27,6 МПа, на портландцементе, доставленном со стройки, — 23,3 МПа и на портландцементе Воскресенского завода — 23,6 МПа. Первые опыты показали, что с повышением температуры замораживания от —20 до 0° С прочность бетона падает.
Влияние температуры замораживания на прочность бетона было выявлено более полно в опытах. Как видно при замораживании в первые 3 суток при температуре —5° С бетон имеет прочность в 1,5 раза меньшую, чем при температуре —20° С. Более высокие температуры, чем —5° С, являются недостаточно надежными для использования прочности замороженного бетона. Кстати, за перевозку цемента с охотой берутся транспортные компании, а многие из них даже специализируются на перевозки бетона.
Интересно отметить, что во время испытания бетонных образцов после замораживания в возрасте до 5 сут не наблюдалось обычного разрушения и раздробления сжатого бетона. Бетонные образцы при сжатии вели себя так же, как образцы из материала, обладающего повышенными пластическими свойствами и большой вязкостью. При испытании, начиная с 10-суточного возраста, обнаруживается хрупкое разрушение бетона, что еще больше проявляется к 30 суток; при сжатии образцы раскалываются по вертикальным плоскостям. Интересно также отметить, что кубик, оставленный после испытания, будучи замороженным в суточном возрасте, имел прочность 17,7 МПа, а через 5 месяцев последующего нормального твердения —27,5 МПа. Это говорит о том, что прочность деформированного бетона в замороженном состоянии (молодого возраста) в последующем способна увеличиваться. Это вполне понятно, поскольку структура такого бетона в замороженном состоянии не нарушается (происходит смятие), а после оттаивания он может снова твердеть.
Опыты с образцами из песка и гравелисто-песчаной смеси с полным заполнением пустот водой показали, что в замороженном состоянии они приобретают достаточно высокую прочность. При этом существенную роль играет гранулометрия смеси и плотность ее укладки. Как видно из данных, применение вместо песка гравелисто-песчаной смеси повышает прочность образцов в 1,5 раза.
Возможность получения высокой прочности бесцементных льдобетонов может быть использована при сооружении временных дорог, заграждений и некоторых конструкций в вечномерзлом грунте и в зимний период.
Для получения характеристики замороженного бетона в части сопротивления его ударной нагрузке (что также является очень важным) в лаборатории были испытаны стандартные плитки на разрушение (на приборе Мартенса). Кроме получения характеристики сопротивляемости замороженного бетона удару необходимо было сравнить замороженный бетон с бетоном, твердеющим в нормальных условиях. Поэтому на удар были испытаны плитки, хранившиеся в нормальных условиях в возрасте 1, 3, 5 и 30 суток и затем замороженные. На мороз плитки выносили (так же как и кубы) через 1 —1,5 ч и через 1,3 и 5 суток хранения в нормальных условиях после изготовления. 9 января 2013
Способы зимнего бетонирования
Ниже будут рассмотрены все существующие методы зимнего бетонирования, их области применения, а также даны рекомендации по выбору метода выдерживания бетона в зависимости от вида возводимых монолитных железобетонных конструкций в зимний период времени при низких температурах.
Методы зимнего бетонирования | Особенности технологии | Примерный расход энергии, (кВт/ч)/м3 | Область применения |
«Термос» | В момент укладки температура бетонной смеси не менее 10оС;
опалубка – утепленная; скорость остывания бетона — не более 50С/ч. |
— | Массивные конструкции, в которых модуль поверхности (отношение площади поверхности возводимой конструкции к ее объему) Мп<3 |
Сквозной электродный прогрев | Подъем температуры:
со скоростью не более 10оС/ч; Температура изотермы — не более 50оС; Продолжительность прогрева: до достижения критической прочности |
80 – 110 | Бетонные малоармированные конструкции: МП от 3 до 10, толщина – до 50 см |
Периферийный электрообогрев | Подъем температуры: со скоростью не более 150С/ч;
Температура изотермы — не более 50оС; Продолжительность прогрева: до достижения критической прочности |
90 – 120 | Конструкции, в которых МП < 15;
— при толщине до 20 см — односторонний прогрев и утепленная опалубка; — при толщине более 20 см – двусторонний прогрев. |
Предварительный форсированный электроразогрев, в том числе в опалубке с повторным вибрированием | Разогрев бетонной смеси за 10 – 15 мин до 70 –80оС. в бункерах /опалубке (после уплотнения).
При МП<5 достаточно «термосно» выдержать в утепленной опалубке. При МП >5 может понадобиться дополнительный обогрев |
40 – 80 | Конструкции, в которых МП < 8. |
Кондуктивный обогрев или «греющая опалубка» | Подъем температуры: со скоростью не более 10оС/ч;
Температура изотермы — не более 50оС; Продолжительность прогрева: до достижения критической прочности |
100 – 130 | МП > 8. |
Электропрогрев греющими проводами | Подъем температуры: со скоростью не более 100С/ч;
Температура изотермы — не более 50оС; на контакте с бетоном температура нагревателя не более 80оС; продолжительность прогрева: до достижения критической прочности |
80 – 110 | МП > 10. |
Обогрев инфракрасными излучателями | Температура нагреваемой бетонной поверхности — не выше 80оС;
защита от испарения воды из бетона – обязательна |
120 – 200 | Эффективно для стен и перекрытий |
Индукционный прогрев | Подъем температуры: со скоростью не более 150С/ч;
Температура изотермы — не более 50оС; температура бетона на контакте с арматурой — не более 80оС; продолжительность прогрева: до достижения критической прочности |
100 – 150 | Густоармированные железобетонные конструкции линейного типа |
Конвективный прогрев (тепляки, электрокалориферы) | Камерный традиционный (общий) тепляк при температуре до 20оС.
Локальный камерный тепляк. |
120 – 200 | Конструкции с показателем МП > 10 в замкнутых пространствах и температуре наружного воздуха выше минус 30оС |
Безообогревный с применением химических добавок | Ограничения по виду добавок: зависит от вида арматуры и требований к качеству поверхности | — | Ограничение по температуре наружного воздуха: до минус 15оС |
Паропрогрев (глухим или острым паром) | Подъем температуры: со скоростью не более 15оС/ч;
Температура изотермы — не более 50оС; Продолжительность прогрева: до достижения критической прочности |
90 – 140 | Для любых конструкций, требующих обогрева |
.
Особенности заливки бетона зимой
В первую очередь определимся с терминологией: если днем столбик термометра не поднимается выше 5 градусов, а ночью уверенно остается на отметке 0 или ниже, то условия работы считают зимними. При такой температуре процесс гидратации бетона проходит очень медленно. Вода, постепенно замерзая, увеличивается в объеме и уменьшает коэффициент сцепления состава с арматурой. Фундамент от этого становится ненадежным, рассыпчатым, даже если использовать экономичный бетон М300.
Если заливать бетон при температуре ниже 0 в уже промерзлую почву, вода замерзнет быстрее, чем цемент провзаимодействует с жидкостью и тогда гидратация не произойдет вовсе – фундамент даст сильную усадку и раскрошится.
Несколько советов
Схема теплоизоляции фундамента пенополистиролом.
Рытье траншеи. При ее выкапывании требуется следить за водой, наполняющей дно котлована. Нельзя давать ей подмерзать. Если лед все-таки образовался, то следует удалить замерзшую воду.
Бетонный раствор. В бетонный раствор добавляются специальные вещества, которые не дадут ему быстро застыть, вследствие чего фундамент, построенный зимой, будет прочным. Помимо этого, такие вещества способствуют лучшей заливке бетонного раствора в опалубку
При выборе компонентов следует обратить внимание на их свойства. Некоторые вещества, наоборот, уменьшают время твердения
Большое количество модификаторов производится в жидком виде, и нужное количество следует узнавать по определенной шкале. Инструкцию можно найти на упаковке. Следует знать, что применение активных веществ уменьшит расход воды до 15%, и их использование при температуре ниже 20°C будет нецелесообразно. Также следует знать, что при влажности более 60 % смесь в опалубку лучше не заливать. Всю работу лучше проводить в сухую погоду. Применяя модификаторы для бетонной смеси, не стоит пренебрегать подогревом и теплоизоляцией сооружения. Они обязательны в любом случае.
Морозостойкость. Бетон должен быть устойчивым к низким температурам, но это не дает гарантию, что работы будут проведены соответственно нормам.
Сохранность тепла. Теплоизоляция важна для фундамента и опалубки. Она повысит температуру раствора и не даст воде в растворе заледенеть.
Подогрев бетонного раствора. При очень низких температурах бетонную смесь следует хорошо прогревать. Если температура термометра опускается ниже 15°C, подогрев приобретает особенную актуальность. Смесь прогревают до 50°C. Это ускоряет схватывание бетона. После заливки следует обогреть все сооружение и стараться поддерживать температуру выше 0°C, пока бетон не станет достаточно прочным. Специалисты предлагают приобрести специальные обогреваемые опалубочные системы или заложить обогревательную систему прямо в отливку. Такая система представляет собой решетки из арматуры. К ним подключают электрический ток через трансформатор. Металл становится горячим и отдает тепло бетону. Но минусом такой системы является большая стоимость такого обогрева. Но зато даже при температуре окружающего воздуха -30°C бетонная смесь отлично схватится, будет прочной и крепкой.
Зачем нужны добавки в бетон? Простой вопрос, на который трудно дать простой ответ. В этой статье мы постараемся внести ясность в информационный поток и помочь вам разобраться со всеми тонкостями применения ПМД.
Купите оптом по выгодной цене
- Бетон – искусственный камень, который получают путем заливки смеси в форму или опалубку.
- Бетонная смесь – жидкость, состоящая из воды, цемента, песка и щебня.
- Добавки в бетон – вещества, которые модифицируют определенные показатели бетонной смеси и будущего бетона.
Противоморозные добавки в бетон – это группа строительных материалов, предназначенных для ввода в бетонную смесь с целью получения стойкости к морозу. Здесь следует оговориться.
Согласно СНиП и ГОСТ, производство бетонных работ допускается при температуре не ниже +5 градусов. Это значит, что бетонирование в зимнее время требует определенных условий. Иными словами, объект необходимо подогреть. Можно прогревать первые три дня до набора первичной прочности, а потом подождать весны.
Если мы не хотим ждать или у нас нет возможности долго подогревать помещение, тогда следует использовать противоморозные добавки в бетон. Они делятся на 3 группы:
- Антифризы – снижают точку замерзания воды;
- ПМД – ускоряют набор прочности и снижают потребность в воде;
- Комплексные препараты – сочетают свойства пластификатора, ПМД и антифриза в зависимости от назначения.
Чаще всего используют ПМД и комплексные препараты, так как не все антифризы подходят для изготовления напряженных и железобетонных конструкций. Использование добавок не отменяет необходимости следовать правилам зимнего бетонирования, они снижают затраты времени и энергии.
То есть, под морозостойкостью понимают возможность укладывать смесь зимой при отрицательных значениях температуры. Значит, перед нами добавки в бетон, которые обладают дополнительными свойствами, делающими зимнее бетонирование менее затратным, а также ускоренным и более удобным.
Как мы уже говорили, одной из самых важных характеристик смеси является удобоукладываемость. Не менее важна прочность, этот показатель говорит нам о марке бетона.
Проблема заключается в том, что для приготовления бетонной смеси, которая затвердеет в камень с определенной, заранее установленной прочностью, необходимо соблюдать правильное отношение воды к цементу. При таком соотношении смесь получается жесткой, с ней неудобно, более того, чаще всего нереально работать. Многие решают эту проблему добавлением в смесь воды.
Решением является добавление другого вещества, которое сможет сделать смесь более подвижной. Так мы подходим к первой и основной группе добавок в бетон – пластификаторам.
Пластификаторы позволяют увеличить группу удобоукладываемости бетона с П2 до П5 без добавления лишней воды. В результате вы получите подвижную пластичную смесь с высокими показателями прочности будущего камня.
Кроме того, добавки позволяют:
- Ускорить или замедлить процесс твердения.
- Снизить температуру замерзания воды.
- Увеличить вовлечение воздуха.
- Снизить потребность смеси в воде.
- Продлить срок жизни раствора в зимнее время.
- Помочь набрать первичную 30% прочность в первые сутки без подвода тепла.
Это всевозможные пластификаторы, модификаторы, ингибиторы коррозии, гидрофобизаторы, пенообразователи, напрягающие добавки, пигменты, расширяющие добавки и т.д. Мы не будем останавливаться на каждой, перечислим лишь наиболее распространенные.