Давление в вентиляционной системе
Чтобы вентиляция была эффективной, нужно правильно подобрать давление вентилятора. Есть два варианта для самостоятельного измерения напора. Первый способ — прямой, при котором замеряют давление в разных местах. Второй вариант — рассчитать 2 вида давления из 3 и получить по ним неизвестную величину.
Давление (также — напор) бывает статическим, динамическим (скоростным) и полным. По последнему показателю выделяют три категории вентиляторов.
К первой относят приборы с напором < 1 кПа, второй — 1—3 кПа и более, третьей — больше 3—12 кПа и выше. В жилых строениях используют устройства первой и второй категории.
Аэродинамическая характеристика осевых вентиляторов на графике: Pv — полное давление, N — мощность, Q — расход воздуха, ƞ — КПД, u — скорость, n — частота вращения
В технической документации к вентилятору обычно указывают аэродинамические показатели, включая полное и статическое давление при определенной производительности. На практике «заводские» и реальные параметры часто не совпадают, и связано это с конструктивными особенностями вентиляционных систем.
Существуют международные и государственные стандарты, направленные на повышение точности измерений в лабораторных условиях.
В России обычно применяют методы A и C, при которых напор воздуха после вентилятора определяют косвенно, исходя из установленной производительности. В разных методиках в площадь выхода включают или не включают втулку рабочего колеса.
Разновидности вентиляции
В зависимости от того, как организован воздухообмен, системы вентиляции для производственных помещений могут быть разными. Оборудовать механическую вентиляцию можно в виде:
- Приточной.
- Вытяжной.
- Смешанной.
Если оборудована приточная система, то свежий воздух подается внутрь помещения вентилятором, то есть автоматически, регулируя давление и поток. Отработанный воздух выходит самостоятельно через различные отверстия и щели. В этом варианте имеется возможность регулировать количество поступающего воздуха, используя задвижки, их обычно устанавливают на вентиляционных трубах.
Приточная циркуляция обычно устанавливается в тех зонах производства, куда нежелательно поступление вредных веществ из смежных помещений или зон. Также она помогает не допустить приток остывшего воздуха с улицы, поэтому довольно часто ее можно видеть в помещениях на предприятии, где достаточно тепло.
Вытяжная вентиляция на производстве осуществляется с точность до наоборот. Грязный воздух выводится на улицу через вентиляционные отверстия с помощью вентилятора. Чистый воздух заходит естественным путем через оконные проемы, двери и из соседних помещений.
При совмещенной системе приток и отток воздуха происходит через разные воздухоотводы принудительным путем. При организации такого типа системы должны выполняться определенные требования. Объем выходящего и поступающего воздуха должен быть практически одинаковым.
Механическая вентиляция – это, конечно хорошо, она по сравнению с естественной:
- Не зависит от времени года и погоды за окнами предприятия.
- Можно всегда подогреть воздух, поступающий внутрь.
- Можно очищать поступающий воздух от пыли.
- Прежде, чем выпустить отработанный воздух с вредными и ядовитыми веществами, можно его очистить.
Имеются, конечно, и свои недостатки:
- Шум во время работы.
- Небольшой объем воздуха, который может пройти через такую вентиляционную систему.
- Приличные материальные затраты.
- Много расходуется электроэнергии.
Алгоритм выполнения расчетов
При проектировании, настройке или модификации уже действующей вентиляционной системы обязательно выполняются расчеты воздуховода. Это необходимо для того, чтобы правильно определить его параметры с учетом оптимальных характеристик производительности и шума в актуальных условиях.
При выполнении расчетов большое значение имеют результаты замеров расхода и скорости движения воздуха в воздушном канале.
Расход воздуха – объем воздушной массы, поступающий в систему вентиляции за единицу времени. Как правило, этот показатель измеряется в м³/ч.
Скорость движения – величина, которая показывает, насколько быстро воздух перемещается в системе вентиляции. Этот показатель измеряется в м/с.
Если известны эти два показателя, можно рассчитать площадь круглых и прямоугольных сечений, а также давление, необходимое для преодоления локального сопротивления или трения.
Составляя схему, нужно выбрать угол зрения с того фасада здания, который расположен в нижней части планировки. Воздуховоды отображаются сплошными толстыми линиями
Чаще всего используется следующий алгоритм проведения вычислений:
- Составление аксонометрической схемы, в которой перечисляются все элементы.
- На базе этой схемы рассчитывается длина каждого канала.
- Измеряется расход воздуха.
- Определяется скорость потока и давление на каждом участке системы.
- Выполняется расчет потерь на трение.
- С использованием нужного коэффициента выполняется расчет потерь давления при преодолении локального сопротивления.
При выполнении расчетов на каждом участке сети воздухораспределения получаются разные результаты. Все данные нужно уравнять посредством диафрагм с веткой наибольшего сопротивления.
Вычисление площади сечения и диаметра
Правильный расчет площади круглых и прямоугольных сечений очень важен. Неподходящий размер сечения не позволит обеспечить нужный воздушный баланс.
Слишком большой воздуховод займет много места и уменьшит эффективную площадь помещения. Если выбрать слишком маленький размер каналов, будут появляться сквозняки, так как увеличится давление потока.
Для того, чтобы рассчитать необходимую площадь сечения (S), нужно знать значения расхода и скорости движения воздуха.
Для вычислений используется следующая формула:
S = L/3600*V,
при этом L – расход воздуха (м³/ч), а V – его скорость (м/с);
Используя следующую формулу, можно посчитать диаметр воздуховода (D):
D = 1000*√(4*S/π), где
S – площадь сечения (м²);
π – 3,14.
Если планируется установка прямоугольных, а не круглых воздуховодов, вместо диаметра определяют необходимую длину/ширину воздушного канала.
Все полученные значения сопоставляют со стандартами ГОСТ и выбирают изделия, наиболее близкие по диаметру или площади сечения
При выборе такого воздуховода в расчет берется примерное сечение. Используется принцип a*b ≈ S, где a – длина, b – ширина, а S – площадь сечения.
Согласно нормативам, соотношение ширины и длины не должно быть выше 1:3. Также следует пользоваться таблицей типовых размеров, предоставляемой заводом-изготовителем.
Чаще всего встречаются такие размеры прямоугольных каналов: минимальные габариты – 0,1 м х 0,15 м, максимальные – 2 м х 2 м. Преимущество круглых воздуховодов в том, что они отличаются меньшим сопротивлением и, соответственно, создают меньше шума при работе.
Расчет потери давления на сопротивление
По мере продвижения воздуха по магистрали создается сопротивление. Для его преодоления вентилятор приточной установки создает давление, которое измеряют в Паскалях (Па).
Потерю давления можно снизить, увеличив сечение воздуховода. При этом может быть обеспечена примерно одинаковая скорость потока в сети
Для того, чтобы подобрать подходящую приточную установку с вентилятором нужной производительности, необходимо рассчитать потерю давления на преодоление локального сопротивления.
Применяется эта формула:
P=R*L+Ei*V2*Y/2, где
R – удельная потеря давления на трение на определенном участке воздуховода;
L – длина участка (м);
Еi – суммарный коэффициент локальной потери;
V – скорость воздуха (м/с);
Y – плотность воздуха (кг/м3).
Значения R определяются по нормативам. Также этот показатель можно рассчитать.
Если сечение воздуховода круглое, потери давления на трение (R) рассчитываются следующим образом:
R = (X*D/В) * (V*V*Y)/2g, где
X – коэфф. сопротивления трения;
L – длина (м);
D – диаметр (м);
V – скорость воздуха (м/с), а Y – его плотность (кг/ м³);
g – 9,8 м/с².
Если же сечение не круглое, а прямоугольное, в формулу необходимо подставить альтернативный диаметр, равный D = 2АВ/(А + В), где А и В – стороны.
Перепады давления
Чтобы компенсировать перепады, в контур встраивается дополнительное оборудование:
- расширительный бачок;
- клапан аварийного выброса теплоносителя;
- воздухоотводы.
Скачки рабочего давления в системе отопления могут быть спровоцированы различными причинами. В процессе эксплуатации может наблюдаться повышение или понижение давления. Рассмотрим основные причины такого явления и будем разбираться, как с этим бороться.
Причины понижения
При понижении рабочего давления циркуляция воды может просто остановиться, так отключится нагреватель. Помимо этого, низкая скорость теплоносителя приведет к тому, что на отдаленные участи контура вода будет доходить с большими теплопотерями, или, вообще, не дойдет. Причинами такого явления может быть:
Чтобы найти место, где протекает вода надо обследовать каждый узел. Делать это следует очень внимательно. Бывают случаи, когда утечка настолько мизерна, что незаметна визуально. Также могут образоваться микроскопические трещины на теплоносителе.
остановка насосов;
Если насосы перестают качать воду по трубам, то норма давления в системе отопления не может быть соблюдена. Все насосы электрические, поэтому причиной может стать его обесточивание. В первую очередь, надо проверить его подпитку от электросети. Если все в порядке, возможно, сломался механизм. В этом случае насос придется заменить.
неисправность расширительного бачка;
Бачок компенсирует расширение воды при нагревании. Он состоит из двух камер, которые разделены резиновой мембраной. Одна камера с газом, вторая для воды. В газовой камере есть ниппель, через который можно подкачивать воздух обычным насосом. Падение давления может наблюдаться, если в газовой камере недостаточный объём воздуха или если порвалась мембрана. В первом случае надо открутить бачок, спустить с него воду и воздух, а потом накачать необходимое количество атмосфер. Во втором случае – только замена. Также причиной падения рабочего давления в системе отопления может быть недостаточный объём бачка. В этом случае необходимо установить дополнительный бак.
Как вычислить давление в вентиляции?
Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.
Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди – минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.
Схема приемника полного давления: 1 — приемная трубка, 2 — преобразователь давления, 3 — камера торможения, 4 — держатель, 5 — кольцевой канал, 6 — передняя кромка, 7 — входная решетка, 8 — нормализатор, 9 — регистратор выходного сигнала, α — угол при вершинах, h — глубина впадин
Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.
Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.
Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.
Трубка Прандтля является усовершенствованным вариантом трубки Пито: приемники выпускают в 2 вариантах — для скоростей меньше и больше 5 м/с
Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.
Напор тогда измеряют по следующему методу:
- За вентилятором выбирают первое сечение и сканируют его зондом. По нескольким точкам измеряют средний полный напор и производительность. Последнюю потом сравнивают с производительностью на входе.
- Дальше выбирают дополнительное сечение — на ближайшем прямом участке после выхода из вентилирующего прибора. От начала такого фрагмента отмеряют 4—6 D, а если длина участка меньше, то выбирают сечение в самой отдаленной точке. Затем берут зонд и определяют производительность и средний полный напор.
От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.
Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.
Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.
Перепады давления можно регистрировать напоромерами, тягомерами по ГОСТ 2405-88 и дифманометрами по ГОСТ 18140-84 с классом точности 0,5—1,0
В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.
Также рекомендуем прочесть наш материал о выборе труб для вентиляции.
Метод допустимых скоростей
При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.
Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:
- Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
- Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
- Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
- Вычисляем потери давления на трение Pтр.
- По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
- Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.
В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.
Конструктивные особенности вентиляторов
Различаются по множеству параметров, начиная от конструктивных особенностей, типов крепления и заканчивая местом установки и уровнем шума. Рассмотрим подробней каждый тип вентиляторов по принципу работы и конструктивным особенностям.
Первоначально отметим, что по принципу работы все вентиляторы принято делить на два типа:
Все остальные типы вентиляторов: диагональный, диаметральный, безлопастной и т.д. — модификации радиальных и осевых конструкций.
Радиальный (центробежный)
Конструктивно состоит из кожуха в форме спирали (улитки) в котором находится крыльчатка – полый цилиндр с лопастями, расположенных параллельно стенкам кожуха. При вращении колеса воздух, через входное отверстие попадает в прорези между лопастями и благодаря центробежной силе движется по спирали корпуса, а затем выходит через выходное отверстие.
От расположения и наклона лопаток зависит уклон воздушного потока. При направлении лопаток назад, скорость потока уменьшается, но при этом уменьшается уровень шума и количество потребляемой энергии. Устройство характеризуется высокой мощностью.
Радиальный тип вентиляторов может вращаться в правую или левую сторону. Вращение крыльчатки осуществляется двигателем при помощи ременной передачи или напрямую от вала, но улитки предназначенные для производственных нужд никогда не имеют собственного двигателя.
Применяются радиальные модели для вытяжки или подачи воздуха в помещения с большой протяженностью воздуховодов и большим аэродинамическим сопротивлением. Например, в гостиничных комплексах с обширной системой вентиляции или в производственных цехах, где воздух содержит большое количество примесей (пыль, влага, дым).
Радиальные устройства носят другое название – центробежные вентиляторы, а в народе получили простое название «улитка».
Осевой (аксиальный)
Представляет собой цилиндрический корпус (наличие корпуса зависит от конструкции), в центре которого расположена крыльчатка с лопастями расположенных по диагонали — перпендикулярно относительно оси двигателя. Крыльчатка устанавливается на вращающуюся ось. При вращении лопастей воздух движется вдоль оси и отбрасывается усиленным потоком. Аксиальная конструкция имеет наиболее высокий КПД среди всех существующих конструкций и требует незначительных мощностей, если отсутствует встречное сопротивление воздуха.
Благодаря несложной конструкции, простоты в монтаже и низком потреблении энергии осевые модели чаще всего применяются в быту.
Этап первый
Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.
Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.
Формирование схемы
Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.
Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная
Приточная
Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.
Вытяжная
Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.
Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.
Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:
- воздуховод единого размера сечения;
- из одного материала;
- с постоянным потреблением воздуха.
Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.
Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.
Определение размерных величин сечений воздуховодов
Производится исходя из таких показателей, как:
- потребление воздуха на отрезке;
- нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.
Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.
Как вычислить давление в вентиляции?
Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.
Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди – минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.
Схема приемника полного давления: 1 — приемная трубка, 2 — преобразователь давления, 3 — камера торможения, 4 — держатель, 5 — кольцевой канал, 6 — передняя кромка, 7 — входная решетка, 8 — нормализатор, 9 — регистратор выходного сигнала, α — угол при вершинах, h — глубина впадин
Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.
Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.
Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.
Трубка Прандтля является усовершенствованным вариантом трубки Пито: приемники выпускают в 2 вариантах — для скоростей меньше и больше 5 м/с
Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.
Напор тогда измеряют по следующему методу:
- За вентилятором выбирают первое сечение и сканируют его зондом. По нескольким точкам измеряют средний полный напор и производительность. Последнюю потом сравнивают с производительностью на входе.
- Дальше выбирают дополнительное сечение — на ближайшем прямом участке после выхода из вентилирующего прибора. От начала такого фрагмента отмеряют 4—6 D, а если длина участка меньше, то выбирают сечение в самой отдаленной точке. Затем берут зонд и определяют производительность и средний полный напор.
От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.
Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.
Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.
Перепады давления можно регистрировать напоромерами, тягомерами по ГОСТ 2405-88 и дифманометрами по ГОСТ 18140-84 с классом точности 0,5—1,0
В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.
Также рекомендуем прочесть наш материал о выборе труб для вентиляции.
Важность воздухообмена для человека
По строительным и гигиеническим нормам, каждый жилой или производственный объект необходимо обеспечить системой вентиляции.
Главное ее назначение – сохранение воздушного баланса, создание благоприятного для работы и отдыха микроклимата. Это значит, что в атмосфере, которой дышат люди, не должно наблюдаться переизбытка тепла, влаги, загрязнений различного рода.
Нарушения в организации системы вентиляции приводят к развитию инфекционных болезней и заболеваний дыхательной системы, к снижению иммунитета, к преждевременной порче продуктов питания.
В излишне влажной и теплой среде быстро развиваются болезнетворные микроорганизмы, на стенах, потолках и даже на мебели появляются очаги плесени и грибка.
Схема вентиляции в двухэтажном частном доме. Вентиляционная система оборудована приточно-вытяжной энергосберегающей установкой с рекуператором теплоты, который позволяет повторно использовать тепло выводимого из здания воздуха
Одним из условий сохранения здорового воздушного баланса является правильное проектирование системы вентиляции. Каждая часть воздухообменной сети должна быть подобрана, исходя из объемов помещения и характеристик воздуха в нем.
Предположим, в небольшой квартире достаточно хорошо налаженной приточно-вытяжной вентиляции, тогда как в производственных цехах обязательна установка оборудования для принудительного воздухообмена.
При строительстве домов, общественных учреждений, цехов предприятий руководствуются следующими принципами:
- каждое помещение нужно обеспечить системой вентиляции;
- необходимо соблюдать гигиенические параметры воздуха;
- на предприятиях следует установить устройства, увеличивающие и регулирующие скорость воздухообмена; в жилых помещениях – кондиционеры или вентиляторы при условии недостаточной вентиляции;
- в помещениях разного назначения (например, в палатах для больных и операционной или в офисе и в комнате для курения) необходимо оборудовать разные системы.
Чтобы вентиляция соответствовала перечисленным условиям, нужно сделать расчеты и подобрать оборудование – приборы подачи воздуха и воздуховоды.
Также при устройстве вентиляционной системы необходимо правильно выбирать места забора воздуха, чтобы не допустить поступления загрязненных потоков обратно в помещения.
В процессе составления проекта вентиляции для частного дома, многоэтажного жилого здания или производственного помещения рассчитывают объем воздуха и намечают места монтажа вентиляционного оборудования: водухообменных установок, кондиционеров и воздуховодов
От размеров воздуховодов (в том числе домовых шахт) зависит эффективность воздухообмена. Выясним, каковы нормы скорости потока воздуха в вентиляции, указанные в санитарной документации.
Выводы и полезное видео по теме
Обустройство вентиляции дома:
Таким образом, очень важно соблюдать правила выполнения измерений, ведь малейшая погрешность может повлиять на результаты вычислений. Правильные расчеты воздуховода позволят подобрать его оптимальную конфигурацию и необходимые комплектующие, а значит, будет обеспечено бесперебойное и продуктивное функционирование вентиляции. Правильные расчеты воздуховода позволят подобрать его оптимальную конфигурацию и необходимые комплектующие, а значит, будет обеспечено бесперебойное и продуктивное функционирование вентиляции
Правильные расчеты воздуховода позволят подобрать его оптимальную конфигурацию и необходимые комплектующие, а значит, будет обеспечено бесперебойное и продуктивное функционирование вентиляции.
Если у вас появились вопросы или можете дополнить материал ценными сведениями, пожалуйста, оставляйте свои комментарии, делитесь опытом. Блок для связи расположен под статьей.