Варианты схем драйверов
Варианты исполнения устройств:
- Если имеется источник питания с постоянным напряжением 6-30 В.
- Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.
Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).
Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.
Диммируемые драйверы для светодиодов
Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.
Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.
Управление драйвером осуществляется с помощью диммера или ШИМ
Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.
Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.
Виды драйверов
Все драйвера различают по трем критериям – по способу стабилизации, конструкционным особенностям и наличию/отсутствию защиты. Рассмотрим все варианты подробнее.
Линейные и импульсные
В зависимости от схемы стабилизации тока драйверы делятся на два типа – линейные и импульсные. Они отличаются принципом работы и эффективностью.
Перед электронной схемой драйвера поставлена задача – обеспечение стабильных значений тока и напряжения, подводимых к кристаллу (светодиоду). Самый простой и дешевый вариант – включение в цепь ограничительного резистора.
Линейная схема питания:
Эта элементарная схема не способна обеспечивать автоматическое поддержание тока. При повышении напряжения он пропорционально растет и, когда превысит допустимое значение, кристалл разрушится от перегрева.
Более сложное управление осуществляется путем включения в цепь транзистора. Минус линейной схемы – снижение мощности при росте напряжения. Такой вариант допустим при работе led-источников малой мощности, но при работе мощных светодиодов такие схемы не применяют.
Плюсы линейной схемы:
- простота;
- дешевизна;
- относительная надежность.
Наряду с линейными схемами, стабилизировать ток и напряжение можно путем импульсной стабилизации:
- после нажатия кнопки заряжается конденсатор;
- после отпускания конденсатор разряжается, отдавая запасённую энергию полупроводниковому элементу (светодиоду), который начинает испускать свет;
- если напряжение растет, то время зарядки конденсатора сокращается, если падает – увеличивается.
Нажимать кнопку пользователю не приходится – за него всё делает электроника. Роль кнопочного механизма в современных источниках питания выполняют полупроводники – тиристоры или транзисторы.
Рассмотренный принцип работы называется в электронике широтно-импульсной модуляцией. За секунду может происходить десятки и даже тысячи срабатываний. КПД такой схемы достигает 95 %.
Упрощенная схема импульсной стабилизации:
Электронные, диммируемые и на базе конденсаторов
От принципа устройства драйвера зависит область его применения и эксплуатационные характеристики.
Виды драйверов по принципу устройства:
- Электронные. В их схемах обязательно используется транзистор. На выходе устанавливается конденсатор, исключающий или хотя бы сглаживающий пульсации тока. Электронные преобразователи способны стабилизировать токи до 750 мА. Драйверы электронного типа борются не только с пульсациями, но и с электромагнитными высокочастотными помехами, наводимыми электроприборами (радио, телевизор, роутер и т. п.). Минимизировать помехи позволяет наличие специального керамического конденсатора. Минус электронного драйвера – высокая стоимость, плюс – КПД близкий к 95 %. Их используют в мощных led-светильниках: автофарах, прожекторах, уличных фонарях.
- Диммируемые. Особенность диммируемых драйверов – возможность управления яркостью светильника. Регулировка основана на изменении тока на выходе, который и определяет яркость светопотока. Драйвер можно включать в схему двумя способами: между светильником и стабилизатором или между источником питания и преобразователем.
- На основе конденсаторов. Это недорогие модели, используемые для бюджетных светодиодных светильников. Если в схеме производитель не предусмотрел сглаживающий конденсатор, то на выходе наблюдается пульсация. Другой минус – недостаточная безопасность. Плюс подобных моделей – высокий КПД, стремящийся к 100 %, и простота схемы. Подобные драйверы легко собрать своими руками.
В корпусе и без него
Драйвер может быть размещен внутри защитного корпуса, но может и не иметь его. Электронные схемы уязвимы перед многими внешними факторами, поэтому более надежным вариантом считается размещение драйвера в корпусе.
Корпус защищает электронный преобразователь от влаги, пыли, попадания прямых солнечных лучей и т. д. Бескорпусные модели обходятся дешевле, но у них меньше срок службы и хуже стабильность эксплуатации. Они больше подходят для скрытого монтажа.
Линейный светодиодный драйвер своими руками.
Эта часть статьи посвящена радиолюбителям.
Оригинальный линейный источник тока на компараторе.
Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.
sxemy-podnial.net
Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.
Светодиодные светильники. Фото 1.
Драйвер светодиодного светильника на CL1502. Рис. 1.
В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в . Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.
В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.
В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.
Драйвер светодиодного светильника на B77CI. Рис. 2.
Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».
Фонарь светодиодного светильника. Рис. 3.
Внешний вид платы драйвера на B77CI. Фото 2.
Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.
И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.
Литература: 1. https://www.dianyuan.com/upload/community/2014/04/10/1397117125-79110.pdf
Китайские преобразователи – что в них особенного
Китайские друзья славятся умением подделать оборудование так, что им становится невозможно пользоваться. По отношению к драйверам можно сказать так же. Приобретая китайское устройство будьте готовыми к завышенным заявленным характеристикам, низкому качеству и быстрому выходу преобразователя из строя. Если же собирается первый в жизни LED-светильник, потренироваться и получить навыки в радиоэлектронике, такие изделия незаменимы по причине низкой стоимости и простоты исполнения.
Если добавить в схему китайского преобразователя конденсатор, срок службы лампы увеличится
Краткий обзор и тестирование LED-ламп
Хотя принципы построения схем драйверов различных осветительных устройств похожи, между ними имеются отличия и в последовательности подключения элементов, и в их выборе.
Обзор популярных Led моделей
Рассмотрим схемы 4 ламп, которые продаются в свободном доступе. При желании их можно отремонтировать своими руками.
Галерея изображений Фото из Лампа легко разбирается. На плате из алюминия закреплены 32 диода, каждый из которых рассчитан на 1,54 В. Плата вокруг светодиодов нагревается до +53 ºС
Устройство, компактное по размеру и неразборное. Если нужно добраться до драйвера, то сначала необходимо попытаться снять стекло, приклеенное к краям радиатора
Для излучения светового потока используются всего 3 диода. Радиатор играет две роли – рефлектора и корпуса. Трехлинзовое стекло зафиксировано винтовым способом
Чтобы достать контроллер, нужно аккуратно открутить пару винтов, распаять провода, удалить плату. На радиаторе закреплен пластиковый цоколь, в нем – контроллер
Драйвер разобранной лампы BBK P653F
Компактная лампа Ecola 7w
Разборный аналог Ecola GU5.3
Jazzway 7.5w GU10 – подходит для ремонта
Если существует опыт работы с контроллерами, можно заменить элементы схемы, перепаять ее, слегка усовершенствовать.
Однако скрупулезная работа и усилия по поиску элементов не всегда оправданы – легче купить новый осветительный прибор.
Вариант #1 – LED-лампа BBK P653F
У марки BBK существует две очень похожие модификации: лампа P653F отличается от модели P654F лишь конструкцией излучающего узла. Соответственно, и схема драйвера, и конструкция прибора в целом у второй модели построена по принципам устройства первой.
Схема драйвера стандартная, но усложнена непривычным местом расположения ключа и внедренной индуктивностью. Предохранитель мог бы быть установлен около диодного моста, но он отсутствует
В конструкции легко обнаружить недостатки. Например, место установки контроллера: частично в радиаторе, при отсутствии изоляции, частично в цоколе. Сборка на микросхеме SM7525 выдает на выходе 49,3 В.
Вариант #2 – LED-лампа Ecola 7w
Радиатор выполнен из алюминия, цоколь – из термостойкого полимера серого цвета. На печатной плате толщиной в полмиллиметра закреплены 14 диодов, подключенных последовательно.
Между радиатором и платой – слой теплопроводящей пасты. Цоколь зафиксирован саморезами.
Схема контроллера простая, реализована на компактной плате. Светодиоды нагревают плату-основание до +55 ºС. Пульсаций практически нет, радиопомехи также исключены
Плата полностью помещена внутрь цоколя и присоединена укороченными проводами. Возникновение коротких замыканий невозможно, так как вокруг находится пластмасса – изоляционный материал. Результат на выходе контроллера – 81 В.
Вариант #3 – разборная лампа Ecola 6w GU5,3
Благодаря разборной конструкции можно самостоятельно производить ремонт или совершенствовать драйвер устройства.
Однако портит впечатление неприглядный внешний вид и конструкция прибора. Габаритный радиатор утяжеляет вес, поэтому при креплении лампы к патрону рекомендуется дополнительная фиксация.
Плата имеет компактные размеры и продуманное расположение элементов, для крепления которых применены обе плоскости. Наличие пульсаций объясняется отсутствием фильтрующего конденсатора, который должен быть на выходе
Недостатком схемы является наличие заметных пульсаций светового потока и высокая степень радиопомех, что обязательно скажется на сроке эксплуатации. Основа контроллера – микросхема BP3122, показатель на выходе – 9,6 В.
Вариант #4 – лампа Jazzway 7,5w GU10
Внешние элементы лампы отсоединяются легко, поэтому до контроллера можно добраться достаточно быстро, открутив две пары саморезов. Защитное стекло держится на защелках. На плате зафиксированы 17 диодов с последовательной связью.
Однако сам контроллер, находящийся в цоколе, щедро залит компаундом, а провода запрессованы в клеммах. Чтобы их освободить, нужно воспользоваться сверлом или применить распайку.
Недостаток схемы в том, что функцию ограничителя тока выполняет обычный конденсатор. При включении лампы возникают броски тока, результатом чего является или перегорание светодиодов, или выход из строя светодиодного моста
Радиопомех не наблюдается – и все благодаря отсутствию импульсного контроллера, но на частоте 100 Гц наблюдаются ощутимые пульсации света, доходящие до 80% от максимального показателя.
Результат работы контроллера – 100 В на выходе, но по общей оценке лампа относится скорее к слабым приборам. Стоимость ее явно завышена и приравнена к стоимости марок, которые отличаются стабильным качеством продукции.
Правильные схемы подключения к сети
Подключение во многом проходит также, как для ламп накаливания, люминисцентных аналогов. Надо просто обесточить цоколь, а затем вкрутить в него лампу. Главное во время установки избегать прикосновения к металлическим частям изделия.
Последовательный
Такой вариант соединения не всегда считается оптимальным. Количество проводов нужно минимальное, но в бытовых условиях эту схему практически не используют. Это связано с двумя серьёзными недостатками:
- При перегорании одной лампочки работать перестают все. Только последовательная замена приборов на всей цепи способна справиться с поиском неисправностей.
- На лампы подают пониженное напряжение, потому сила свечения у них – не полная. От количества соединённых лампочек зависит то, насколько эта энергия неполная.
Соединение такого типа актуально при построении гирлянд на ёлках, при большом количестве световых источников с низким показателем мощности.
Само подключение по последовательной схеме максимально простое:
- От одного светильника к другому обходит фаза.
- У последней лампочки в цепи ноль подают ко второму контакту.
- Фаза проходит к выключателю, от распределительной коробки.
- Далее всё переходит к точечному светильнику.
Нулевой провод или нейтраль подключают ко второму контакту у последнего светильника.
Для домовых подъездов практическое применение схемы тоже допустимо.
Параллельный
Для большинства случаев применяют эту схему. Потребители не пугаются даже проводов в большом количестве. Главное преимущество – в подаче одинакового напряжения ко всем осветительным приборам, участвующим в схеме. Только одна лампочка не работает после перегорания, остальные компоненты остаются нетронутыми. С поиском мест поломки не возникнет никаких проблем.
Параллельное соединение проводят двумя путями:
- Лучевой. Отдельный кабель соединяют с каждым из осветительных приборов. Наличие или отсутствие заземление влияет на то, будет провод трёх- или двухжильным.
- Шлейфная схема.
Фаза с нейтралью от щитка и выключателя переходят на первый светильник от выключателя, когда речь о последнем варианте. От светильника кусок кабеля переходит к следующей части. Потом идёт ко второй, и так далее. Каждый из компонентов соединяют с четырьмя кусками кабеля, последний элемент – исключение.
Лучевой
Вариант подключения отличается надёжностью. При перегорании одной лампочки другие не затрагиваются. Но имеются и отрицательные стороны:
- Кабелей нужно слишком много. Но качественное исполнение проводки позволяет смириться с таким недостатком.
- Одно место используют для соединения большого количества кабелей. Непросто соединить все элементы на достаточно высоком уровне качества, но решить проблему можно.
Обычная клеммная колодка – один из оптимальных вариантов для соединения. Фазу подают с одной стороны, в этом участвуют перемычки. Потом эту часть разводят по другим участкам конструкции. Провода, идущие к лампочкам, подсоединяются с другой стороны.
Такой же способ применения – у клеммников ВАГО на соответствующее число контактов. Главное – правильно выбрать модель, участвующую в параллельном соединении. Внутри всё рекомендуют заполнить пастой, защищающей от окисления.
Ещё один из приемлемых вариантов – применение скрутки всех проводников, с последующей спайкой.
Светодиодное освещение с питанием от сети
Но для построения светодиодной схемы освещения необходимо построить специальные источники питания с регуляторами, трансформаторами или без них. В качестве решения нижеприведенная схема демонстрирует конструкцию светодиодного контура с питанием от сети без использования трансформаторов.
Схема светодиодной лампы на 220 В
Для питания этой цепи используется переменный ток 220 В, который подаётся в качестве входного сигнала. Ёмкостное реактивное сопротивление понижает напряжение переменного тока. Переменный ток поступает на конденсатор, пластины которого непрерывно заряжаются и разряжаются, а связанные токи всегда поступают в пластинки и выходят из них, что вызывает реактивное сопротивление, направленное против потока.
Реакция, создаваемая конденсатором, зависит от частоты входного сигнала. R2 сбрасывает накопленный ток из конденсатора, когда вся цепь выключена. Он способен хранить до 400 В, а резистор R1 ограничивает этот поток. Следующий этап схемы светодиодной лампы своими руками — это мостовой выпрямитель, который предназначен для преобразования сигнала переменного тока в постоянный ток. Конденсатор C2 служит для устранения пульсации в выпрямленном сигнале постоянного тока.
Резистор R3 служит в качестве ограничителя тока для всех светодиодов. В схеме использованы белые светодиоды, которые имеют падение напряжения около 3,5 В и потребляют 30 мА тока. Поскольку светодиоды подключены последовательно, потребление тока очень мало. Поэтому эта схема становится энергоэффективной и имеет бюджетный вариант изготовления.
Светодиодная лампа из отходов
LED 220 В может быть легко выполнена из неработающих ламп, ремонт или восстановление которых нецелесообразны. Лента из пяти светодиодов приводится в действие с использованием трансформатора. В цепи 0,7 uF / 400V полиэфирный конденсатор C1 снижает напряжение сети. R1 — это резистор для разрядки, который поглощает накопленный заряд от C1, когда вход переменного тока выключен.
Резисторы R2 и R3 ограничивают подачу тока при включении схемы. Диоды D1 — D4 образуют мост-выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает управление светодиодами.
Порядок изготовления настольной лампы своими руками:
Разберите и осторожно удалите разбитые стекла. Аккуратно откройте сборку
Снимите электронику и удалите её. Соберите схему на 1 мм ламинатном листе. Отрежьте круглый лист ламината (ножницами). Отметьте положение шести круглых отверстий на листе. Просверлите отверстия в соответствии со светодиодами заподлицо в шести отверстиях. Используйте наконечник клея, чтобы удерживать светодиодную сборку в нужном положении. Закройте сборку. Убедитесь, что внутренняя проводка не касается друг друга. Теперь осторожно протестируйте на 220 В.
LED для автомобиля
Используя ленту LED, можно легко изготовить самодельную красивую наружную подсветку автомобиля. Нужно использовать 4 светодиодных полосыы по одному метру для чёткого и яркого свечения. Для обеспечения водонепроницаемости и прочности соединения тщательно обрабатывают термоклеем. Правильное выполнение электрических соединений проверяется мультиметром. Реле IGN получает питание, когда двигатель работает и выключается после отключения двигателя. Чтобы понизить автомобильное напряжение, которое может достигать 14,8 V, в схему включается диод, обеспечивающий долговечность светодиодов.
Светодиодная лампа своими руками на 220в
Цилиндрическая лампа LED обеспечивает правильное и равномерное распределение генерируемой освещённости на всех 360 градусах, так что все помещение равномерно освещено.
Лампа оснащена интерактивной функцией защиты от перенапряжений, обеспечивающей идеальную защиту устройства от всех импульсов переменного тока.
40 светодиодов объединены в одну длинную цепь светодиодов, соединённых последовательно одна за другой. Для входного напряжения 220 В можно подключить около 90 светодиодов в ряд, для напряжения 120 В — 45 светодиодов.
Расчёт получен путём деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода. 310/3,3 = 93 единиц, а для входов 120 В — 150/3,3 = 45 единиц. Если уменьшить количество светодиодов ниже этих цифр, возникнет риск перенапряжения и выход со строя собранной схемы.
Светодиодное освещение с питанием от сети
Но для построения светодиодной схемы освещения необходимо построить специальные источники питания с регуляторами, трансформаторами или без них. В качестве решения нижеприведенная схема демонстрирует конструкцию светодиодного контура с питанием от сети без использования трансформаторов.
Схема светодиодной лампы на 220 В
Для питания этой цепи используется переменный ток 220 В, который подаётся в качестве входного сигнала. Ёмкостное реактивное сопротивление понижает напряжение переменного тока. Переменный ток поступает на конденсатор, пластины которого непрерывно заряжаются и разряжаются, а связанные токи всегда поступают в пластинки и выходят из них, что вызывает реактивное сопротивление, направленное против потока.
Реакция, создаваемая конденсатором, зависит от частоты входного сигнала. R2 сбрасывает накопленный ток из конденсатора, когда вся цепь выключена. Он способен хранить до 400 В, а резистор R1 ограничивает этот поток. Следующий этап схемы светодиодной лампы своими руками — это мостовой выпрямитель, который предназначен для преобразования сигнала переменного тока в постоянный ток. Конденсатор C2 служит для устранения пульсации в выпрямленном сигнале постоянного тока.
Резистор R3 служит в качестве ограничителя тока для всех светодиодов. В схеме использованы белые светодиоды, которые имеют падение напряжения около 3,5 В и потребляют 30 мА тока. Поскольку светодиоды подключены последовательно, потребление тока очень мало. Поэтому эта схема становится энергоэффективной и имеет бюджетный вариант изготовления.
Светодиодная лампа из отходов
LED 220 В может быть легко выполнена из неработающих ламп, ремонт или восстановление которых нецелесообразны. Лента из пяти светодиодов приводится в действие с использованием трансформатора. В цепи 0,7 uF / 400V полиэфирный конденсатор C1 снижает напряжение сети. R1 — это резистор для разрядки, который поглощает накопленный заряд от C1, когда вход переменного тока выключен.
Резисторы R2 и R3 ограничивают подачу тока при включении схемы. Диоды D1 — D4 образуют мост-выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает управление светодиодами.
Порядок изготовления настольной лампы своими руками:
Разберите и осторожно удалите разбитые стекла.
Аккуратно откройте сборку.
Снимите электронику и удалите её.
Соберите схему на 1 мм ламинатном листе.
Отрежьте круглый лист ламината (ножницами).
Отметьте положение шести круглых отверстий на листе.
Просверлите отверстия в соответствии со светодиодами заподлицо в шести отверстиях.
Используйте наконечник клея, чтобы удерживать светодиодную сборку в нужном положении.
Закройте сборку.
Убедитесь, что внутренняя проводка не касается друг друга.
Теперь осторожно протестируйте на 220 В.
LED для автомобиля
Используя ленту LED, можно легко изготовить самодельную красивую наружную подсветку автомобиля. Нужно использовать 4 светодиодных полосыы по одному метру для чёткого и яркого свечения. Для обеспечения водонепроницаемости и прочности соединения тщательно обрабатывают термоклеем. Правильное выполнение электрических соединений проверяется мультиметром. Реле IGN получает питание, когда двигатель работает и выключается после отключения двигателя. Чтобы понизить автомобильное напряжение, которое может достигать 14,8 V, в схему включается диод, обеспечивающий долговечность светодиодов.
Светодиодная лампа своими руками на 220в
Цилиндрическая лампа LED обеспечивает правильное и равномерное распределение генерируемой освещённости на всех 360 градусах, так что все помещение равномерно освещено.
Лампа оснащена интерактивной функцией защиты от перенапряжений, обеспечивающей идеальную защиту устройства от всех импульсов переменного тока.
40 светодиодов объединены в одну длинную цепь светодиодов, соединённых последовательно одна за другой. Для входного напряжения 220 В можно подключить около 90 светодиодов в ряд, для напряжения 120 В — 45 светодиодов.
Расчёт получен путём деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода. 310/3,3 = 93 единиц, а для входов 120 В — 150/3,3 = 45 единиц. Если уменьшить количество светодиодов ниже этих цифр, возникнет риск перенапряжения и выход со строя собранной схемы.
Виды драйверов.
По типу их можно подразделить на:
Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.
Внутреннее устройство драйвера
Внешний вид и схема драйвера LED 1338G7.
Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.
ШИМ-драйвер Recom.
Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.
Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.
Драйвер с диммером.
LED драйвер на 220 В.
Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:
- блок питания (БП),
- источник тока,
- адаптер питания,
- источник питания.
Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.